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● Let U and V be two separable function spaces. 

● G  U : to V  , is the general (potentially nonlinear) operator we are interested in learning.

● Data; {(ui, vi)}, i=1, ...,N, where ui ∈ U are the input functions, and vi ∈ V are the output 

functions.

● The approximation Ĝ : U × Θ to V , where the parameters Θ  are picked to minimize |G – Ĝ| 

Operator Learning

Operator Learning April 2025
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Operator Learning

Operator Learning

Examples:

● Derivative: u(t) → u'(t) 

● Laplacian: u(x, y) → uxx + uyy

● Integral transform: u(x, y) → ∫ u(t) K(x, t) dt  
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Operator Learning

Operator Learning

Examples:

● Derivative: G:  u(t) → u'(t) 

● Laplacian: G:  u(x, y) → uxx + uyy

● Integral transform: G:  u(x, y) → ∫ u(t) K(x, t) dt  
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Deep Operator Network (DeepONet)

Operator Learning

DeepONets consist of two neural networks,

● Branch: Nonlinear encoding of the input functions;

● Trunk: Nonlinear basis for the output functions;

The DeepONet can be viewed as an p-dimensional inner product between the branch and 

the trunk:

such that                                             is minimized for all training function pairs.
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

Operator Learning

The PoU-MoE trunk is motivated by the partition-of-unity approximation.

We partition the output function domain Ω into P  overlapping spherical patches; Ωk, k=1, ..., P .
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

Operator Learning

● The key idea is to train a separate trunk network on each patch.

● Then, blend them together to produce one global trunk (to be used in the ensemble).

● The PoU-MoE trunk is written as,

where the weight functions wk are the compactly supported                  Wendland kernel.
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

Operator Learning

Scaled and shifted Wendland kernel on a patch Ωk is given by
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

Operator Learning

Scaled and shifted Wendland kernel on a patch Ωk is given by

The weight functions wk are then given by,

With the condition, 
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

Operator Learning

Each patch's trunk         can be viewed as a spatially local “expert”.
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

Operator Learning

Each patch's trunk         can be viewed as a spatially local “expert”.

Properties of

● Is sparse in its experts          .

● Constitutes a global set of basis functions.

● Is a universal approximator. 
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Proper Orthogonal Decomposition (POD) Trunk

Operator Learning

The POD trunk uses the output functions' eigenvectors as a set of global basis functions.

In this work, we also use a “Modified-POD” trunk that includes the mean function φ0 in the 

set of basis functions.
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Ensemble DeepONet

Operator Learning May 2025April 2025
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Ensemble DeepONet

Operator Learning

Goal: Use both local and global basis functions in the DeepONet.
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Ensemble DeepONet

Operator Learning

Goal: Use both local and global basis functions in the DeepONet.

We propose the ensemble trunk which uses multiple types of basis functions.

Example, given three trunk networks,

where,
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Ensemble DeepONet
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Ensemble architectures

Operator Learning

What makes a good ensemble trunk?
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Ensemble architectures

Operator Learning

What makes a good ensemble trunk?

Combine trunks with different properties?
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Ensemble architectures

Operator Learning

What makes a good ensemble trunk?

● Vanilla-POD: Adding POD modes.

● Vanilla-PoU: Adding spatial locality (PoU-MoE).

● POD-PoU: Both POD global modes and PoU-MoE local expertise.

● Vanilla-POD-PoU: Adding a vanilla trunk (extra trainable parameters) to a POD-PoU 

ensemble.
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Ensemble architectures

Operator Learning

What makes a good ensemble trunk?

● Vanilla-POD: Adding POD modes.

● Vanilla-PoU: Adding spatial locality (PoU-MoE).

● POD-PoU: Both POD global modes and PoU-MoE local expertise.

● Vanilla-POD-PoU: Adding a vanilla trunk (extra trainable parameters) to a POD-PoU 

ensemble.

● (P+1)-Vanilla: Simple overparametrization. We use P+1 vanilla trunks in this model, where 

P  is the number of PoU-MoE patches.
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2D Reaction-Diffusion

Operator Learning

camb(y, t)  is a background source of the chemical, kon  and koff  are constants.

Ω =    [0, 2]2  and T = [0, 0.5].

kon and koff chosen to introduce a sharp spatial discontinuity in the solution at y1 = 1.

Goal: Learn the solution operator G : c(y,0) → c(y,0.5) .
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2D Reaction-Diffusion

Operator Learning May 2025April 2025
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Spatial Locality

Operator Learning

● Basis functions corresponding to the largest branch coefficients, i.e., the most “important” 

basis functions. 

● The PoU basis spatially varies significantly more than the vanilla basis.

● The PoU-MoE trunk learns spatially local features, which improves accuracy.
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3D Variable-Coefficient Reaction-Diffusion

Operator Learning

Ω was the unit ball, and T = [0,0.5].

Sharp point of discontinuity at y1 = 0.

K(y)  was chosen to introduce steep gradients in the diffusion term.

Goal: Learn the solution operator G : c(y,0) → c(y,0.5) .

May 2025April 2025



28

Ensemble and Mixture-of-Experts DeepONets For Operator Learning

April 2025

3D Variable-Coefficient Reaction-Diffusion

Operator Learning May 2025April 2025



29

Ensemble and Mixture-of-Experts DeepONets For Operator Learning

April 2025

2D Lid-driven Cavity Flow

Operator Learning

Ω was set to [0, 1]2. The steady state boundary condition is

Goal: Learn the solution operator 
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2D Lid-driven Cavity Flow

Operator Learning May 2025April 2025
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2D Darcy Flow

Operator Learning

K(y) is the permeability field.

f(y) = −1. 

Ω was a triangular domain.

Goal: Learn the solution operator 
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2D Darcy Flow

Operator Learning May 2025April 2025
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Insights

Operator Learning

The big question - what makes a good ensemble trunk?
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Insights

Operator Learning

Yes/no refers to whether the strategy outpeforms a vanilla-DeepONet.
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Conclusion

Operator Learning

● The ensemble DeepONet, a method of enriching the basis functions of 

the DeepONet.

● The POD-PoU ensemble consistently beats the vanilla-DeepONet 

across all problems (2-4x accuracy improvement).

● Simple overparametrization ((P+1) -Vanilla DeepONet) is not enough 

and sometimes deteriorates accuracy; a judicial combination of 

localized and global basis functions is vital.

● The novel PoU-MoE trunk captures spatially local features.

● The PoU-MoE trunk brings expressivity in problems with steep gradients 

in either the input or output functions.
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Future work

Operator Learning

● Extend PoU-MoE to adaptive partitioning strategies (trainable patch 

centers and patch radii, trainable patch shape).

● Ensemble learning for other neural operators (FNO, GNO, etc.).
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Thank You!

 

Ramansh Sharma and Varun Shankar. “Ensemble and Mixture-of-Experts DeepONets for 
Operator Learning”. Transactions on Machine Learning Research, March 2025. 
arxiv.org/abs/2405.11907.
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3D Variable-Coefficient Reaction-Diffusion

Operator Learning

where A=9, B=0.0215, C=0.005.

K(y) was chosen to have steep gradients and defined as,
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Other results

Operator Learning

Relative l2 errors (as percentage) on the test dataset. RD stands for reaction-
diffusion.
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Runtime results

Operator Learning

Average time per training epoch in seconds. RD stands for reaction-diffusion.
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Runtime results

Operator Learning

Inference time on the test dataset in seconds. RD stands for reaction-diffusion.
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Universal Approximation Theorem - PoU-MoE Trunk

Operator Learning May 2025April 2025
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Universal Approximation Theorem - PoU-MoE Trunk
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Universal Approximation Theorem - PoU-MoE Trunk

Operator Learning May 2025April 2025



45

Ensemble and Mixture-of-Experts DeepONets For Operator Learning

April 2025

Universal Approximation Theorem - Ensemble Trunk
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Ensemble FNO

Operator Learning

FNOs consist of a lifting operator, a projection operator, and intermediate Fourier layers 
consisting of kernel-based integral operators.

ft denotes the intermediate function at the tth Fourier layer. Then, ft+1 is given by

where σ is an activation function, K is a matrix-valued kernel, and W is the pointwise 

convolution.

This is a projection of ft(x) onto a set of global Fourier modes. Incorporating a set of 
localized basis functions in an ensemble FNO using the PoU-MoE formulation:

The PoU-MoE formulation now combines a set of localized integrals, each of which is a 
projection of ft onto a local Fourier basis.
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