Ensemble and Mixture-of-Experts DeepONets For Operator Learning

Ramansh Sharma, Varun Shankar Kahlert School of Computing, University of Utah

The University of Manchester, April 21, 2025

Outline

- Operator Learning
- Deep Operator Network (DeepONet)
- Ensemble DeepONet
- Results
- Conclusion

Operator Learning

- Let \mathcal{U} and \mathcal{V} be two separable function spaces.
- G: U to V, is the general (potentially nonlinear) operator we are interested in learning.
- Data; $\{(u_i, v_i)\}$, i=1,...,N, where $u_i \in \mathcal{U}$ are the input functions, and $v_i \in \mathcal{V}$ are the output functions.
- The approximation $\hat{G}: \mathcal{U} \times \Theta \ to \ \mathcal{V}$, where the parameters Θ are picked to minimize $|G \hat{G}|$

Operator Learning

Examples:

- Derivative: $u(t) \rightarrow u'(t)$
- Laplacian: $u(x,y) \rightarrow u_{xx} + u_{yy}$
- Integral transform: $u(x,y) \rightarrow \int u(t) K(x,t) dt$

Operator Learning

Examples:

- Derivative: $G: u(t) \rightarrow u'(t)$
- Laplacian: $G: u(x,y) \rightarrow u_{xx} + u_{yy}$
- Integral transform: $G: u(x,y) \rightarrow \int u(t) K(x,t) dt$

Deep Operator Network (DeepONet)

DeepONets consist of two neural networks,

- Branch: Nonlinear encoding of the input functions; $m{eta}: \mathbb{R}^{N_x} o \mathbb{R}^p$
- Trunk: Nonlinear basis for the output functions; $m{ au}: \mathbb{R}^{d_v} o \mathbb{R}^p$

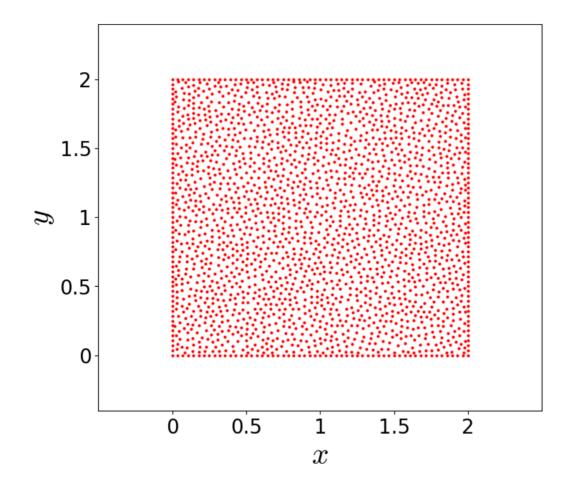
The DeepONet can be viewed as an p-dimensional inner product between the branch and the trunk:

$$\hat{G}(u)(y) = \langle \boldsymbol{\tau}(y), \boldsymbol{\beta}(u) \rangle + b_0$$

such that $||v_i(y) - \hat{G}(u_i)(y)||_2^2$ is minimized for all training function pairs.

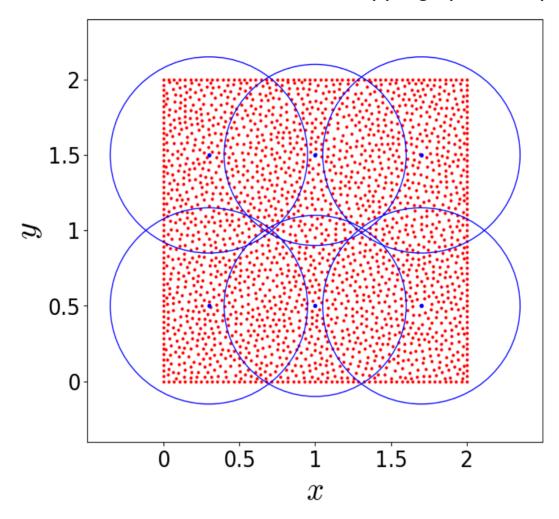
The PoU-MoE trunk is motivated by the partition-of-unity approximation.

We partition the output function domain Ω into P overlapping spherical patches; $\Omega_k, k=1,...,P$.



The PoU-MoE trunk is motivated by the partition-of-unity approximation.

We partition the output function domain Ω into P overlapping spherical patches; $\Omega_k, k=1,...,P$.



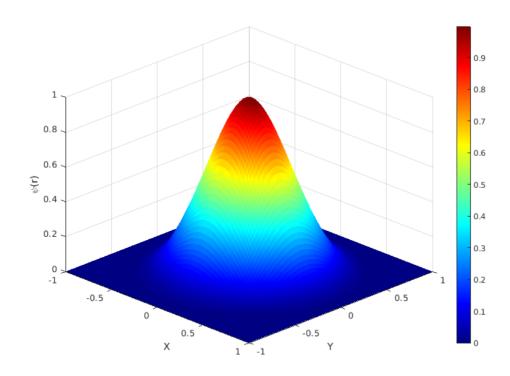
- The key idea is to train a separate trunk network on each patch.
- Then, *blend* them together to produce one global trunk (to be used in the **ensemble**).
- The PoU-MoE trunk is written as.

$$oldsymbol{ au}_{\scriptscriptstyle{\mathrm{PU}}}(y) = \sum_{k=1}^{P} w_k(y) oldsymbol{ au}_k(y),$$

where the weight functions w_k are the compactly supported $\mathbb{C}^2\left(\mathbb{R}^3\right)$ Wendland kernel.

Scaled and shifted Wendland kernel on a patch Ω_k is given by

$$\psi_k(y, y^c) = \psi_k\left(\frac{\|y - y_k^c\|}{\rho}\right) = \psi_k(r) = (1 - r)_+^4 (4r + 1).$$



Scaled and shifted Wendland kernel on a patch Ω_k is given by

$$\psi_k(y, y^c) = \psi_k\left(\frac{\|y - y_k^c\|}{\rho}\right) = \psi_k(r) = (1 - r)_+^4 (4r + 1).$$

The weight functions w_k are then given by,

$$w_k(y) = \frac{\psi_k(y)}{\sum_j \psi_j(y)}, \ k, j = 1, \dots, P,$$

With the condition, $\sum_k w_k(y) = 1$.

Each patch's trunk τ_k can be viewed as a spatially local "expert".

Each patch's trunk au_k can be viewed as a **spatially local "expert"**.

Properties of $au_{\scriptscriptstyle extsf{PU}}$

- Is sparse in its experts $\,oldsymbol{ au}_{k}$.
- Constitutes a global set of basis functions.
- Is a universal approximator.

Proper Orthogonal Decomposition (POD) Trunk

The POD trunk uses the output functions' eigenvectors as a set of global basis functions.

$$\boldsymbol{\tau}_{\text{POD}}(y) = \begin{bmatrix} \phi_1(y) & \phi_2(y) & \dots & \phi_p(y) \end{bmatrix},$$

In this work, we also use a "Modified-POD" trunk that includes the mean function ϕ_0 in the set of basis functions.

$$\boldsymbol{\tau}_{\text{Modified-POD}}(y) = \begin{bmatrix} \phi_0(y) & \phi_1(y) & \dots & \phi_{p-1}(y) \end{bmatrix}.$$

Goal: Use both local and global basis functions in the DeepONet.

Goal: Use both local and global basis functions in the DeepONet.

We propose the **ensemble trunk** which uses multiple types of basis functions.

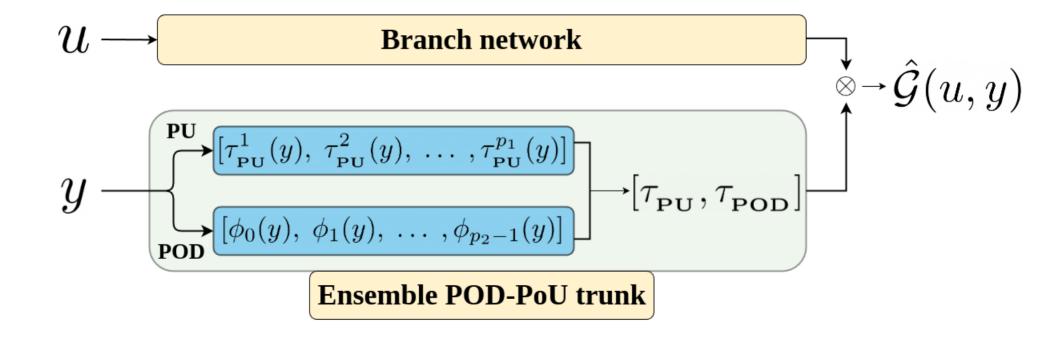
Example, given three trunk networks, $oldsymbol{ au}_1, oldsymbol{ au}_2, oldsymbol{ au}_3$.

$$\hat{G}(u,y) = \left\langle \underbrace{[\boldsymbol{\tau}_1(y), \boldsymbol{\tau}_2(y), \boldsymbol{\tau}_3(y)]}_{\text{Ensemble trunk}}, \hat{\boldsymbol{\beta}}(u) \right\rangle + b_0,$$

where,

$$m{ au}_1: \mathbb{R}^{d_v}
ightarrow \mathbb{R}^{p_1}, m{ au}_2: \mathbb{R}^{d_v}
ightarrow \mathbb{R}^{p_2}, m{ au}_3: \mathbb{R}^{d_v}
ightarrow \mathbb{R}^{p_3}$$

$$\boldsymbol{\beta}: \mathbb{R}^{N_x} o \mathbb{R}^{p_1+p_2+p_3}$$



What makes a good ensemble trunk?

What makes a good ensemble trunk?

Combine trunks with different properties?

What makes a good ensemble trunk?

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).
- POD-PoU: Both POD global modes and PoU-MoE local expertise.
- Vanilla-POD-PoU: Adding a vanilla trunk (extra trainable parameters) to a POD-PoU ensemble.

What makes a good ensemble trunk?

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).
- POD-PoU: Both POD global modes and PoU-MoE local expertise.
- Vanilla-POD-PoU: Adding a vanilla trunk (extra trainable parameters) to a POD-PoU ensemble.
- (P+1)-Vanilla: Simple overparametrization. We use P+1 vanilla trunks in this model, where P is the number of PoU-MoE patches.

2D Reaction-Diffusion

$$rac{\partial c}{\partial t} = k_{\text{on}} (R - c) \, c_{\text{amb}} - k_{\text{off}} \, c + \nu \Delta c, \, \, y \in \Omega, \, \, t \in \mathcal{T},$$
 $u rac{\partial c}{\partial n} = 0, \, \, y \in \partial \Omega,$ $c(y, 0) \sim \mathcal{U}(0, 1).$

 $c_{
m amb}(y,t)$ is a background source of the chemical, $k_{
m on}$ and $k_{
m off}$ are constants.

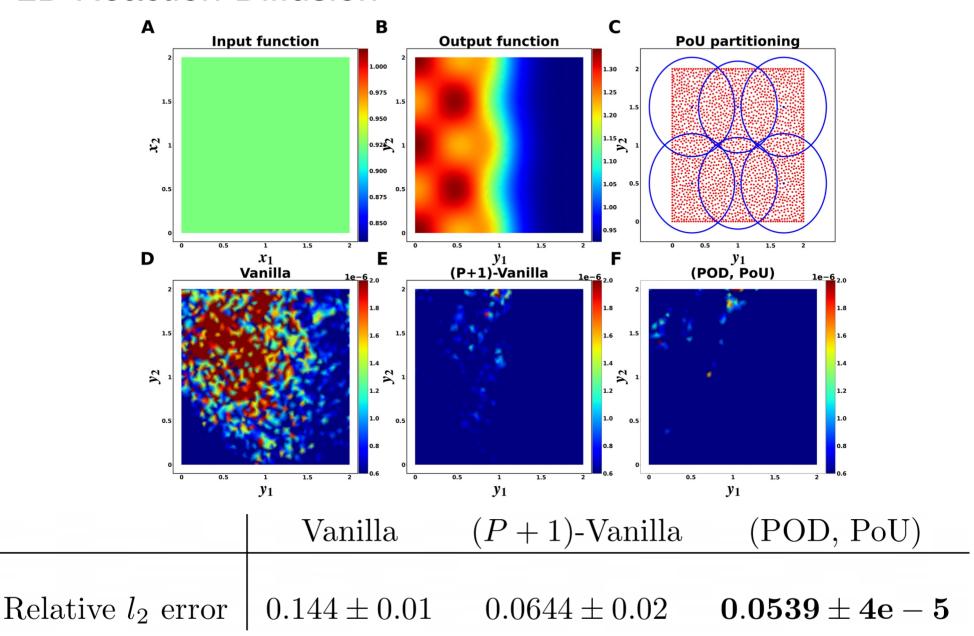
$$\Omega\!=\![0,2]^2$$
 and $T\!=\![0,0.5].$

 $k_{
m on}$ and $k_{
m off}$ chosen to introduce a sharp spatial discontinuity in the solution at $y_1 = 1$.

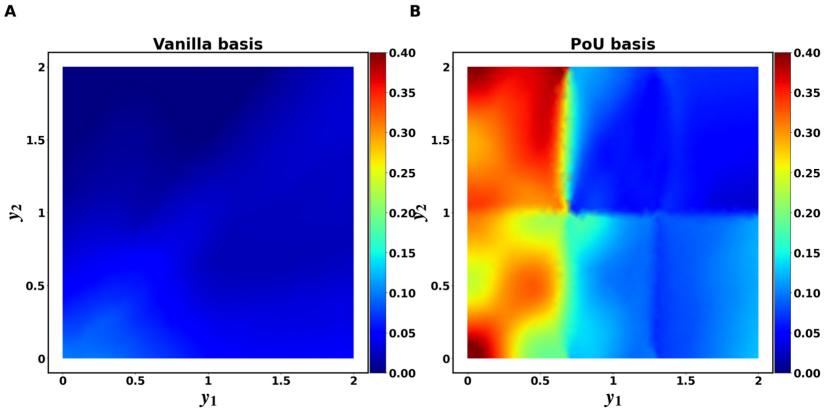
$$k_{\text{on}} = \begin{cases} 2, & y_1 \le 1.0, \\ 0, & \text{otherwise} \end{cases}, \qquad k_{\text{off}} = \begin{cases} 0.2, & y_1 \le 1.0, \\ 0, & \text{otherwise} \end{cases}.$$

Goal: Learn the solution operator $G: c(y,0) \rightarrow c(y,0.5)$.

2D Reaction-Diffusion



Spatial Locality



- Basis functions corresponding to the largest branch coefficients, i.e., the most "important" basis functions.
- The PoU basis spatially varies significantly more than the vanilla basis.
- The PoU-MoE trunk learns spatially local features, which improves accuracy.

3D Variable-Coefficient Reaction-Diffusion

$$rac{\partial c}{\partial t} = k_{
m on} \left(R - c \right) c_{
m amb} - k_{
m off} \ c +
abla \cdot \left(K(y)
abla c
ight), \ y \in \Omega, \ t \in T,$$
 $K(y) rac{\partial c}{\partial n} = 0, y \in \partial \Omega,$
 $c(y,0) \sim \mathcal{U}(0,1).$

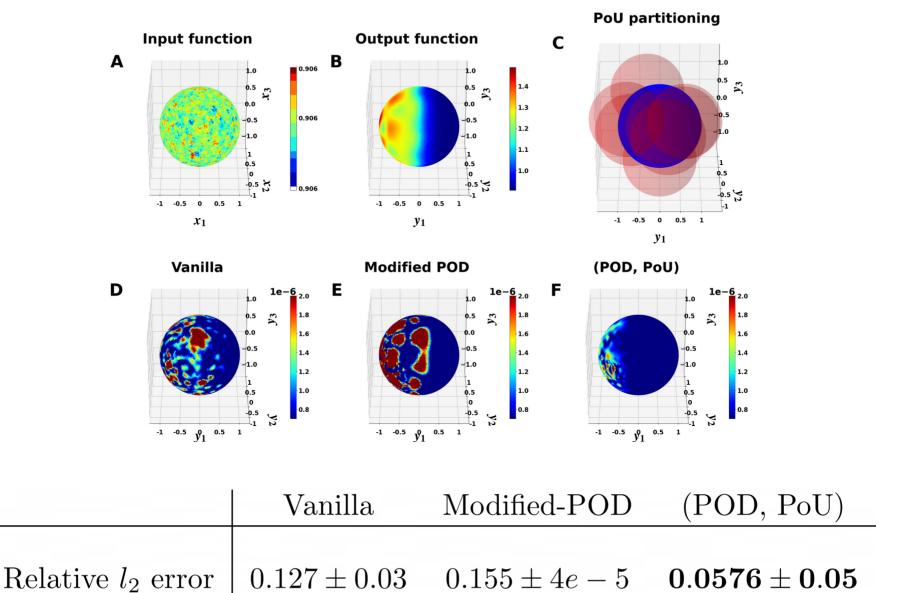
 Ω was the unit ball, and T = [0,0.5].

Sharp point of discontinuity at $y_1 = 0$.

K(y) was chosen to introduce steep gradients in the diffusion term.

Goal: Learn the solution operator $G: c(y,0) \rightarrow c(y,0.5)$.

3D Variable-Coefficient Reaction-Diffusion



2D Lid-driven Cavity Flow

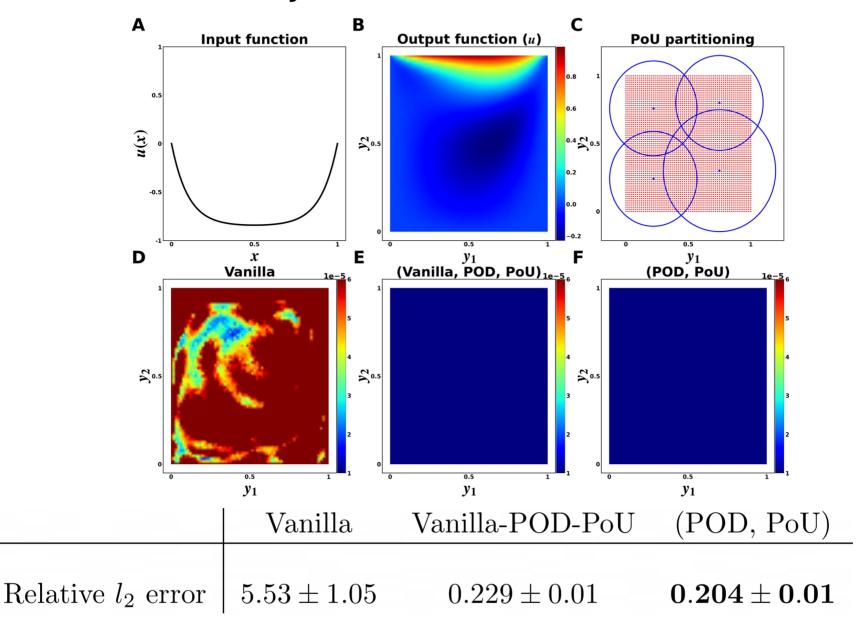
$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla \mathbf{p} + \nu \Delta \mathbf{u}, \quad \nabla \cdot \mathbf{u} = 0, \ y \in \Omega, \ t \in T,$$
$$\mathbf{u} = \mathbf{u}_b,$$

 Ω was set to $[0,1]^2$. The steady state boundary condition is

$$u_b = U\left(1 - \frac{\cosh\left(r(x - \frac{1}{2})\right)}{\cosh\left(\frac{r}{2}\right)}\right), \quad v_b = 0, r = 10.$$

Goal: Learn the solution operator $G: \mathbf{u}_b \to \mathbf{u}$.

2D Lid-driven Cavity Flow



2D Darcy Flow

$$-\nabla \cdot (K(y) \nabla u(y)) = f(y), \ y \in \Omega,$$

$$u(y) \sim \mathcal{GP} (0, \mathcal{K}(y_1, y_1')),$$

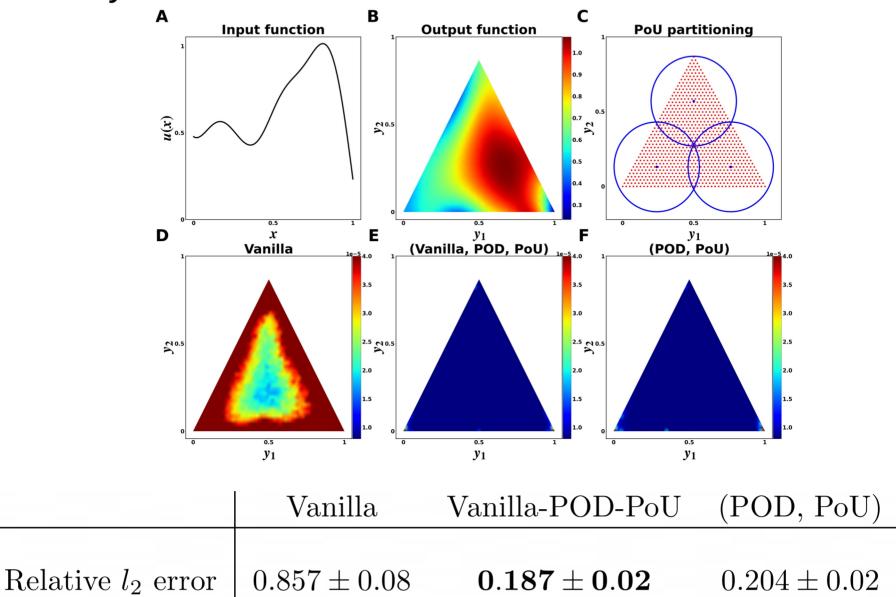
K(y) is the permeability field.

$$f(y) = -1$$
.

 Ω was a triangular domain.

Goal: Learn the solution operator $G: u(y)|_{\partial\Omega} \to u(y)|_{\Omega}$.

2D Darcy Flow



Insights

The big question - what makes a good ensemble trunk?

Insights

Trunk Choices	Darcy flow	Cavity flow	2D RD	3D RD
POD global modes	${ m Yes}$	No	No	No
modified POD global modes	Yes	No	No	No
Adding POD global modes	Yes	Yes	Yes	No
Adding spatial locality	No	Yes	Yes	No
Only POD global modes + spatial locality	Yes	\mathbf{Yes}	\mathbf{Yes}	\mathbf{Yes}
Only POD global modes + spatial locality	\mathbf{Yes}	Yes	Yes	No
+ vanilla trunk				
Adding excessive overparametrization	No	Yes	Yes	No

Yes/no refers to whether the strategy outpeforms a vanilla-DeepONet.

Conclusion

- The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.
- The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems (2-4x accuracy improvement).
- Simple overparametrization (P+1) -Vanilla DeepONet) is not enough and sometimes deteriorates accuracy; a judicial combination of localized and global basis functions is vital.
- The novel PoU-MoE trunk captures spatially local features.
- The PoU-MoE trunk brings expressivity in problems with steep gradients in either the input or output functions.

Future work

- Extend PoU-MoE to adaptive partitioning strategies (trainable patch centers and patch radii, trainable patch shape).
- Ensemble learning for other neural operators (FNO, GNO, etc.).

Thank You!

Ramansh Sharma and Varun Shankar. "Ensemble and Mixture-of-Experts DeepONets for Operator Learning". Transactions on Machine Learning Research, March 2025. arxiv.org/abs/2405.11907.

3D Variable-Coefficient Reaction-Diffusion

K(y) was chosen to have steep gradients and defined as,

$$K(y) = B + \frac{C}{\tanh(A)} ((A-3) \tanh(8y_1 - 5) - (A-15) \tanh(8y_1 + 5) + A \tanh(A)),$$

where A=9, B=0.0215, C=0.005.

Other results

Relative l_2 errors (as percentage) on the test dataset. RD stands for reaction-diffusion.

	Darcy flow	Cavity flow	2D RD	3D RD
Vanilla	0.857 ± 0.08	5.53 ± 1.05	0.144 ± 0.01	0.127 ± 0.03
POD	0.297 ± 0.01	$7.94 \pm 2e - 5$	$5.06 \pm 8e - 7$	9.40 ± 8
Modified-POD	0.300 ± 0.04	$7.93 \pm 2e - 5$	$0.131 \pm 4e - 5$	$0.155 \pm 4e - 5$
(Vanilla, POD)	0.227 ± 0.03	0.310 ± 0.03	$0.0751 \pm 4e - 5$	5.24 ± 10.4
(P+1)-Vanilla	1.19 ± 0.06	2.17 ± 0.3	0.0644 ± 0.02	5.25 ± 10.3
(Vanilla, PoU)	0.976 ± 0.03	1.06 ± 0.05	0.0946 ± 0.03	5.25 ± 10.3
(POD, PoU)	0.204 ± 0.02	$\boldsymbol{0.204 \pm 0.01}$	$\boldsymbol{0.0539 \pm 4\mathrm{e} - 5}$	$\boldsymbol{0.0576 \pm 0.05}$
(Vanilla, POD, PoU)	$\boldsymbol{0.187 \pm 0.02}$	0.229 ± 0.01	$0.0666 \pm 8e - 5$	5.22 ± 10.4

Runtime results

Average time per training epoch in seconds. RD stands for reaction-diffusion.

	Darcy flow	Cavity flow	2D RD	3D RD
Vanilla	8.93e - 4	3.99e - 4	2.97e - 4	2.10e - 4
POD	5.19e - 4	2.46e - 4	2.06e - 4	1.22e - 4
Modified-POD	6.86e - 4	2.49e - 4	2.08e - 4	1.22e - 4
(Vanilla, POD)	9.80e - 4	3.92e - 4	3.03e - 4	2.32e - 4
(P+1)-Vanilla	1.10e - 3	8.51e - 4	7.27e - 4	9.45e - 4
Vanilla-PoU	8.67e - 4	9.52e - 4	1.03e - 3	1.39e - 3
POD-PoU	6.74e - 4	8.21e - 4	9.24e - 4	1.28e - 3
Vanilla-POD-PoU	8.55e - 4	9.48e - 4	1.05e - 3	1.43e - 3

Runtime results

Inference time on the test dataset in seconds. RD stands for reaction-diffusion.

	Darcy flow	Cavity flow	2D RD	3D RD
Vanilla	1.66e - 4	1.39e - 4	1.32e - 4	7.20e - 5
POD	1.57e - 4	1.12e - 4	1.12e - 4	6.42e - 5
Modified-POD	1.34e - 4	1.08e - 4	9.94e - 5	6.62e - 5
(Vanilla, POD)	1.69e - 4	1.33e - 4	1.20e - 4	7.76e - 5
(P+1)-Vanilla	2.08e - 4	2.12e - 4	1.71e - 4	1.48e - 4
Vanilla-PoU	1.91e - 4	2.42e - 4	2.21e - 4	2.37e - 4
POD-PoU	1.63e - 4	1.94e - 4	1.96e - 4	2.30e - 4
Vanilla-POD-PoU	2.00e - 4	2.18e - 4	2.28e - 4	2.41e - 4

Universal Approximation Theorem - PoU-MoE Trunk

Theorem

Let $\mathcal{G}: \mathcal{U} \to \mathcal{V}$ be a continuous operator. Define \mathcal{G}^{\dagger} as

$$\mathcal{G}^{\dagger}(u)(y) = \left\langle \boldsymbol{\beta}(u; \theta_b), \sum_{j=1}^{P} w_j(y) \boldsymbol{\tau}_j(y; \theta_{\boldsymbol{\tau}_j}) \right\rangle + b_0$$
, where $\boldsymbol{\beta} : \mathbb{R}^{N_x} \times \Theta_{\boldsymbol{\beta}} \to \mathbb{R}^p$ is a branch

network embedding the input function $u, \tau_j : \mathbb{R}^{d_v} \times \Theta_{\tau_j} \to \mathbb{R}^p$ are trunk networks, b_0 is a bias, and $w_j : \mathbb{R}^{d_v} \to \mathbb{R}$ are compactly-supported, positive-definite weight functions that satisfy the partition of unity condition $\sum_j w_j(y) = 1, j = 1, \ldots, P$. Then \mathcal{G}^{\dagger} can approximate \mathcal{G} globally to any desired accuracy, i.e.,

$$\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y)|_{\mathcal{V}} \leq \epsilon,$$

where $\epsilon > 0$ can be made arbitrarily small.

Universal Approximation Theorem - PoU-MoE Trunk

Proof

$$\begin{split} \|\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y)\|_{\mathcal{V}} &= \left\| \mathcal{G}(u)(y) - \left\langle \beta(u; \theta_b), \sum_{j=1}^{P} w_j(y) \tau_j(y; \theta_{\tau_j}) \right\rangle - b_0 \right\|_{\mathcal{V}}, \\ &= \left\| \underbrace{\left(\sum_{j=1}^{P} w_j(y) \right)}_{=1} \mathcal{G}(u)(y) - \left\langle \beta(u; \theta_b), \sum_{j=1}^{P} w_j(y) \tau_j(y; \theta_{\tau_j}) \right\rangle \\ &- \underbrace{\left(\sum_{j=1}^{P} w_j(y) \right)}_{=1} b_0 \right\|_{\mathcal{V}}, \\ &= \left\| \sum_{j=1}^{P} w_j(y) \left(\mathcal{G}(u)(y) - \left\langle \beta(u; \theta_b), \tau_j(y; \theta_{\tau_j}) \right\rangle - b_0 \right) \right\|_{\mathcal{V}}, \\ &\leq \sum_{j=1}^{P} w_j(y) \|\mathcal{G}(u)(y) - \left\langle \beta(u; \theta_b), \tau_j(y; \theta_{\tau_j}) \right\rangle - b_0 \|_{\mathcal{V}}. \end{split}$$

Universal Approximation Theorem - PoU-MoE Trunk

Given a branch network β that can approximate functionals to arbitrary accuracy, the (generalized) universal approximation theorem for operators automatically implies that a trunk network τ_j (given sufficient capacity and proper training) can approximate the restriction of G to the support of $w_i(y)$ such that:

$$\|\mathcal{G}(u)(y) - \langle \boldsymbol{\beta}(u; \theta_b), \boldsymbol{\tau}_j(y; \theta_{\boldsymbol{\tau}_j}) \rangle - b_0\|_{\mathcal{V}} \leq \epsilon_j,$$

for all y in the support of w_j and any $\epsilon_j > 0$. Setting $\epsilon_j = \epsilon, j = 1, \ldots, P$, we obtain:

$$\|\mathcal{G}(u)(y)-\mathcal{G}^{\dagger}(u)(y)\|_{\mathcal{V}}\leq \epsilon\sum_{j=1}^{p}w_{i}(y),$$

$$\implies \|\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y)\|_{\mathcal{V}} \leq \epsilon.$$

where $\epsilon > 0$ can be made arbitrarily small. This completes the proof.

Universal Approximation Theorem - Ensemble Trunk

Theorem

Let $\mathcal{G}: \mathcal{U} \to \mathcal{V}$ be a continuous operator. Define $\hat{\mathcal{G}}$ as $\hat{\mathcal{G}}(u,y) = \left\langle \hat{\boldsymbol{\tau}}(y;\theta_{\tau_1};\theta_{\tau_2};\theta_{\tau_3}), \hat{\boldsymbol{\beta}}(u;\theta_b) \right\rangle + b_0$, where $\hat{\boldsymbol{\beta}}: \mathbb{R}^{N_x} \times \Theta_{\hat{\boldsymbol{\beta}}} \to \mathbb{R}^{p_1+p_2+p_3}$ is a branch network embedding the input function u, b_0 is the bias, and $\hat{\boldsymbol{\tau}}: \mathbb{R}^{d_v} \times \Theta_{\hat{\boldsymbol{\tau}}_1} \times \Theta_{\hat{\boldsymbol{\tau}}_2} \times \Theta_{\hat{\boldsymbol{\tau}}_3} \to \mathbb{R}^{p_1+p_2+p_3}$ is an ensemble trunk network. Then $\hat{\mathcal{G}}$ can approximate \mathcal{G} globally to any desired accuracy, i.e.,

$$\|\mathcal{G}(u)(y) - \hat{\mathcal{G}}(u)(y)\|_{\mathcal{V}} \leq \epsilon,$$

where $\epsilon > 0$ can be made arbitrarily small.

Proof.

This follows from the (generalized) universal approximation theorem^a which holds for arbitrary branches and trunks.

Ensemble FNO

FNOs consist of a *lifting* operator, a *projection* operator, and intermediate Fourier layers consisting of kernel-based integral operators.

 f_t denotes the intermediate function at the t^{th} Fourier layer. Then, f_{t+1} is given by

$$f_{t+1}(y) = \sigma \left(\int_{\Omega} \mathcal{K}(x, y) f_t(x) dx + W f_t(y) \right), x \in \Omega,$$

where σ is an activation function, \mathcal{K} is a matrix-valued kernel, and W is the pointwise convolution.

This is a projection of $f_t(x)$ onto a set of *global* Fourier modes. Incorporating a set of localized basis functions in an ensemble FNO using the PoU-MoE formulation:

$$f_{t+1}(y) = \sigma \left(\underbrace{\int_{\Omega} \mathcal{K}(x,y) f_t(x) \, dx}_{\text{Global basis}} + \underbrace{\sum_{k=1}^{P} w_k(y) \int_{\Omega_k} \mathcal{K}(x,y) \, f_t(x)|_{\Omega_k} \, dx}_{\text{Localized basis}} + W f_t(y) \right),$$

The PoU-MoE formulation now combines a set of *localized* integrals, each of which is a projection of f_t onto a local Fourier basis.

