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● Incompressible fluid flow is of huge interest which arise in a range of applications.

● Aerodynamics: Flow past airfoils, F1 cars, etc.

● Hydrodynamics: flow around ships/submarines, circulation of water in ocean basins.

● Medicine: blood flow in heart valves, arteries, etc.

Motivation

Flow past a 3D airfoil
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● A large corpus of numerical solvers for incompressible fluid flow exist. These methods 

achieve state-of-the-art accuracy!

● But they are often costly and nontrivial to implement.

● Solution: surrogate modeling!

Motivation
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Machine learning based surrogate models have recently become popular.

● Deep Operator Networks (DeepONets)1

● Fourier Neural Operators (FNOs)2

Surrogate modeling

1. Lu, L., Jin, P., & Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying differential equations based 
on the universal approximation theorem of operators.

2. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). Fourier neural operator 
for parametric partial differential equations.
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● Function approximation is between vector spaces -

● Operators are maps between function spaces - 

● Example operators

● Derivatives

● Integrals

● Green’s functions

● PDE solution operators!

Operator Learning
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● Discretize the function spaces:

● Discretize the functions on their respective domains:

● The vector map     needs to be learned/approximated.

● As a learning problem, approximate      by minimizing:

Operator Learning
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Operator Learning

Incompressible Navier-Stokes PDE
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Useful operators:

●

●

●

Operator Learning

Incompressible Navier-Stokes PDE
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● We are interested in operator learning architectures for incompressible flows.

● There has been some work in using neural networks for conservation laws2, and 

physics-guided FNOs in solid mechanics to model divergence-free fields1, but 

challenges remain.

● A more interpretable way to bake in incompressibility (and other properties) is kernels!

Operator Learning

1. Khorrami, M. S., Goyal, P., Mianroodi, J. R., Svendsen, B., Benner, P., & Raabe, D. (2024). A physics-encoded Fourier neural 
operator approach for surrogate modeling of divergence-free stress fields in solids.

2. Richter-Powell, J., Lipman, Y., & Chen, R. T. (2022). Neural conservation laws: A divergence-free perspective. Advances in Neural 
Information Processing Systems, 35, 38075-38088.
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● We want physical constraints to be preserved in the predicted output functions.

● A natural way is to express output functions with a property-preserving kernel basis.

● The operator learning problem then maps from input functions to the expansion 

coefficients      in that basis.

● Why use a kernel basis? It’s easy to analytically bake in desirable properties!

A Property Preserving Kernel Method
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● We construct an analytically divergence-free matrix-valued kernel (whose columns are 

divergence-free) by applying differential operators on a scalar-valued kernel.

A Property Preserving Kernel Method – Incompressibility

Fuselier, E. J., Shankar, V., & Wright, G. B. (2016). A high-order radial basis function (RBF) Leray projection method for the solution 
of the incompressible unsteady Stokes equations. Computers & Fluids, 128, 41-52.

Fuselier, E. J., & Wright, G. B. (2017). A radial basis function method for computing Helmholtz–Hodge decompositions. IMA Journal 
of Numerical Analysis, 37(2), 774-797.
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● To make the kernel spatially periodic, we compute the basis functions on 

periodic inputs

A Property Preserving Kernel Method – Periodicity

Shankar, V., Wright, G. B., Kirby, R. M., & Fogelson, A. L. (2015). Augmenting the immersed boundary method with Radial Basis 
Functions (RBFs) for the modeling of platelets in hemodynamic flows. International Journal for Numerical Methods in Fluids, 79(10), 
536-557.

Owhadi, H. (2023). Gaussian process hydrodynamics. Applied Mathematics and Mechanics, 44(7), 1175-1198.
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A Property Preserving Kernel Method – Power laws

● The kernel can be informed with velocity-increments scaling/power laws arising from 

Kolmogorov-41 laws in the form of additive kernels.

Owhadi, H. (2023). Gaussian process hydrodynamics. Applied Mathematics and Mechanics, 44(7), 1175-1198.
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A Property Preserving Kernel Method

● Now that we have a kernel basis with desirable properties, we solve for the expansion 

coefficients       for each output function over some points      .
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● How do we map from input functions to the output expansions coefficients?

● Another kernel map!

A Property Preserving Kernel Method
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Let                           and                           be block vectors of “stacked” input functions and 
output expansion coefficients respectively.

A Property Preserving Kernel Method

Batlle, P., Darcy, M., Hosseini, B., & Owhadi, H. (2024). Kernel methods are competitive for operator learning. Journal of 
Computational Physics, 496, 112549.
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We then write the interpolation problem as

Let                           and                           be block vectors of “stacked” input functions and 
output expansion coefficients respectively.

A Property Preserving Kernel Method

Batlle, P., Darcy, M., Hosseini, B., & Owhadi, H. (2024). Kernel methods are competitive for operator learning. Journal of 
Computational Physics, 496, 112549.

where       is a positive-definite matrix-valued kernel.

The key insight here is treating            as a point in         !
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● All problems have 10,000 training and 200 test input/output functions.

● We report relative       errors averaged over the test output functions.

● We experimented using three different kernels for         and       :

● Gaussian

● Compactly-supported         Wendland

●        Matérn

● It is crucially important that we pick positive-definite kernels for the operator map!

Results - Setup
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●

● Initial condition:

● Periodic boundary conditions in both 

directions.

● Functions vary by randomly sampling:

●     : 0.1 – 80

●     : 0.0001 – 1

Results – 2D Taylor-Green vortices
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● Triangular mesh with 7477 points.

● Example input and output functions.

Results – 2D Taylor-Green vortices

Input function Output function
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Results – 2D Taylor-Green vortices
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● We map from initial condition to four final 

timesteps.

●

● We employ a spacetime product kernel for 

the output functions.

Results – 2D Spacetime Taylor-Green vortices
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Results – 2D Spacetime Taylor-Green vortices
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● Reynolds number range: 105 – 106.

●

● Initial condition:

● Boundary condition:

Results – 3D Turbulent Species Transport
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Results – 3D Turbulent Species Transport

● Volumetric mesh with 84,876 points.

● Example input and output functions.

Input function Output function
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Results – 3D Turbulent Species Transport
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● Property-preserving kernel methods are overall competitive against other operator 

learning methods for 2D and 3D fluid flow problems.

● One does not have to sacrifice accuracy for preserving physics!

● Big challenge! Cost of the linear solve scales cubically with       Ways to get around this 

to scale to big datasets!

● Incorporating additional desirable properties in the kernels.

● Applications in magnetohydrodynamics.

Conclusion & Future work
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Thank you! Questions?
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●

● Reynolds number range: 112 – 199.

●

● Initial condition:

● Boundary condition:

Results – 2D Laminar Flow past a Cylinder
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Results – 2D Laminar Flow past a Cylinder

● Triangular mesh with 9520 points.

● Example input and output functions.

Input function Output function
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Results – 2D Laminar Flow past a Cylinder
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●

● Reynolds number range: 28 – 900.

●

● Initial condition:

● Boundary condition:

Results – 2D Backward-facing step
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Results – 2D Backward-facing step

● Triangular mesh with 7359 points.

● Example input and output functions.

Input function

Output function
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Results – 2D Backward-facing step
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