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Motivation U

* Incompressible fluid flow is of huge interest which arise in a range of applications.

* Aerodynamics: Flow past airfoils, F1 cars, etc.
* Hydrodynamics: flow around ships/submarines, circulation of water in ocean basins.

 Medicine: blood flow in heart valves, arteries, etc.

Flow past a 3D airfoil
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Motivation U

* Alarge corpus of numerical solvers for incompressible fluid flow exist. These methods

achieve state-of-the-art accuracy!

* But they are often costly and nontrivial to implement.

» Solution: surrogate modeling!
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Surrogate modeling U

Machine learning based surrogate models have recently become popular.

* Deep Operator Networks (DeepONets)?!

* Fourier Neural Operators (FNOs)?

1. Ly, L., Jin, P, & Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying differential equations based
on the universal approximation theorem of operators.

2. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). Fourier neural operator
for parametric partial differential equations.
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Operator Learning U

f

* Function approximation is between vector spaces - R —3 R™

. G
« Operators are maps between function spaces - (f — )/

* Example operators

Derivatives

Integrals

Green’s functions

PDE solution operators!



Operator Learning

G
U Y

Discretize the function spaces: (u,,;, vi)f\il, w; €U, v; €V

Discretize the functions on their respective domains: u(X) € R", v(Y) € R™
The vector map f needs to be learned/approximated.

As a learning problem, approximate (G' by minimizing:

|G (ui(@)(y)] 5y — vi(y)|y 1I3-
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Operator Learning

1 1
(u-V)u=vV?u— -Vp+ —f,
p p

V:-u=0, on Q2 x (0,7,
Bu=g, on 00 x (0,7,

u(x,0) =ug(x), on €.

on 2 x (0,71,

Incompressible Navier-Stokes PDE
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Operator Learning

1 1
— 4+ (U_.V)U_: VVQu— —Vp+ —f, on () X (O,T],
ot p p

V-u=0, on Qx(0,7T],
Bu=g, on 092 x (0,7,

u(x,0) = up(x), on .

Incompressible Navier-Stokes PDE

Useful operators:
- G:u(x,t=0) — u(x,t =T)
- G u(x,t=0) — u(x,t € [T1,Ts])
-G:f—u
9
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Operator Learning U

* We are interested in operator learning architectures for incompressible flows.

* There has been some work in using neural networks for conservation laws?, and
physics-guided FNOs in solid mechanics to model divergence-free fields?, but
challenges remain.

* A more interpretable way to bake in incompressibility (and other properties) is kernels!

1. Khorrami, M. S., Goyal, P., Mianroodi, J. R., Svendsen, B., Benner, P., & Raabe, D. (2024). A physics-encoded Fourier neural
operator approach for surrogate modeling of divergence-free stress fields in solids.

2. Richter-Powell, J., Lipman, Y., & Chen, R. T. (2022). Neural conservation laws: A divergence-free perspective. Advances in Neural
Information Processing Systems, 35, 38075-38088. 10



A Property Preserving Kernel Method

G
U %
$ =
R" > > Pr(y)ds
f k—1

We want physical constraints to be preserved in the predicted output functions.
A natural way is to express output functions with a property-preserving kernel basis.

The operator learning problem then maps from input functions to the expansion

coefficients d in that basis.

Why use a kernel basis? It's easy to analytically bake in desirable properties!

UTAH
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A Property Preserving Kernel Method — Incompressibility U

b : R4 x RY - R,
Y (x,y) = Vo x Vy x d(x,y), @Y :R?x RY - RI*I,

s(x) = Z Y (x,x;) dy.
k=1

* We construct an analytically divergence-free matrix-valued kernel (whose columns are

divergence-free) by applying differential operators on a scalar-valued kernel.

Fuselier, E. J., Shankar, V., & Wright, G. B. (2016). A high-order radial basis function (RBF) Leray projection method for the solution
of the incompressible unsteady Stokes equations. Computers & Fluids, 128, 41-52.

Fuselier, E. J., & Wright, G. B. (2017). A radial basis function method for computing Helmholtz—Hodge decompositions. IMA Journal
of Numerical Analysis, 37(2), 774-797. 12
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A Property Preserving Kernel Method — Periodicity

h(x) = (cos(x1),sin(xy),...,cos(xq),sin(xq)),

o™ (x,y) = ¢(h(x), h(y)),

P

s(x) = Z ST (2, xy,) dy.
k=1

* To make the kernel spatially periodic, we compute the basis functions on

periodic inputs h(x), h(y).

Shankar, V., Wright, G. B., Kirby, R. M., & Fogelson, A. L. (2015). Augmenting the immersed boundary method with Radial Basis
Functions (RBFs) for the modeling of platelets in hemodynamic flows. International Journal for Numerical Methods in Fluids, 79(10),
536-557.

Owhadi, H. (2023). Gaussian process hydrodynamics. Applied Mathematics and Mechanics, 44(7), 1175-1198. 13
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A Property Preserving Kernel Method — Power laws U

* The kernel can be informed with velocity-increments scaling/power laws arising from

Kolmogorov-41 laws in the form of additive kernels.

Owhadi, H. (2023). Gaussian process hydrodynamics. Applied Mathematics and Mechanics, 44(7), 1175-1198.
14
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A Property Preserving Kernel Method U

* Now that we have a kernel basis with desirable properties, we solve for the expansion

coefficients d for each output function over some points Y .

15
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A Property Preserving Kernel Method U

* How do we map from input functions to the output expansions coefficients?

* Another kernel map!

16
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A Property Preserving Kernel Method U
) (A1 (X) i _Ql ] °
uz(X) d, . L .
Let o, — and § = | . be block vectors of “stacked” input functions and
B : : output expansion coefficients respectively.
_uN (X)_ QN
Batlle, P., Darcy, M., Hosseini, B., & Owhadi, H. (2024). Kernel methods are competitive for operator learning. Journal of 17

Computational Physics, 496, 112549.



Let o —
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A Property Preserving Kernel Method U
- -Ql m ®
d, . .
and § = | . be block vectors of “stacked” input functions and

: output expansion coefficients respectively.
dy

We then write the interpolation problem as

N
Qj = Zk(uj,ui)cz-, _] = 1,...,N,
1=1

where k is a positive-definite matrix-valued kernel.

The key insight here is treating u( X ) as a pointin [R™ !

Batlle, P., Darcy, M., Hosseini, B., & Owhadi, H. (2024). Kernel methods are competitive for operator learning. Journal of 18
Computational Physics, 496, 112549.



Results - Setup

All problems have 10,000 training and 200 test input/output functions.
We report relative [, errors averaged over the test output functions.
We experimented using three different kernels for ¢p and k

e Gaussian

* Compactly-supported C* wendland

« C'* Matémn

It is crucially important that we pick positive-definite kernels for the operator map!

UTAH
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Results — 2D Taylor-Green vortices

Q = [0, 27)?

Initial condition:

u(x) = A sin(x) cos(y) exp(—2vt),
v(x) = —A cos(zx) sin(y) exp(—2vt).

Periodic boundary conditions in both
directions.

Functions vary by randomly sampling:
« A:01-80
« I/ :0.0001-1

UTAH
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G:u(x,0) — u(x,1)

Top

Left Right

Bottom
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Results — 2D Taylor-Green vortices

* Triangular mesh with 7477 points.
* Example input and output functions.

50
40
30
20
10
0

Input function Output function 21

Magnitude
Magnitude




Relative [, error vs N at data sites

Results — 2D Taylor-Green vortices
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Divergence vs N at data sites

I I I T TTT1 I| I I T TTTT
2 O _
10 o
10 -
i S
100 *
0‘_ 1 1 I‘I 11 * 1 1 1
102 103 10*

Number of training functions (V)

—{@— DF Wendland

+ DF Wendland Periodic
%X - Wendland
Q@ - Geo-FNO

22



Results — 2D Spacetime Taylor-Green vortices

* We map from initial condition to four final

timesteps.

. T =1[0.7,0.8,0.9, 1].

* We employ a spacetime product kernel for

the output functions.

UTAH

8 )

G :

u(x

0) — u(x,T)

P
Z t Ifk (I)df’w(ilj,a’,‘k) )dk

k

1
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Results — 2D Spacetime Taylor-Green vortices

Relative I, error vs N at data sites Training time vs N Divergence vs N at data sites
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Results — 3D Turbulent Species Transport U

* Reynolds number range: 10°— 10°.

. At=0.05, T =0.5.

e |nitial condition:

UTAH

() -yt 8as inlet ; ll(X, 05)

ur et — ghecified,
ug? et — gpecified,
ueverywhere else _ 0.

* Boundary condition:

u = 0, inner & outer walls, three blades Blade1 Blade2  Blade3

1 h nle as —t—>» | | : — utle
prlg t — O Inlet g -~ éﬁner - > Outlet
Inlet air —1—» ;

A

25

Outer walls
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Results — 3D Turbulent Species Transport U

* Volumetric mesh with 84,876 points.

* Example input and output functions.

2.9e+01
25
20

— 15

10

~5
0
-5 30
20
-1.2e+01 A 10

0
-1.2e+01

Input function Output function 26

Velocity Z

Magnitude




UTAH
Results — 3D Turbulent Species Transport

Relative I, error vs N at data sites , .2 Training time vs N Divergence vs N at data sites
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Conclusion & Future work U

Property-preserving kernel methods are overall competitive against other operator
learning methods for 2D and 3D fluid flow problems.

One does not have to sacrifice accuracy for preserving physics!

Big challenge! Cost of the linear solve scales cubically with /V. Ways to get around this
to scale to big datasets!

Incorporating additional desirable properties in the kernels.

Applications in magnetohydrodynamics.

28
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Thank you! Questions?
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Results — 2D Laminar Flow past a Cylinder

() = [O, 20] X [O, 14].
Reynolds number range: 112 — 199.
At = 0.001, T = 10.

Initial condition:

u(x,0) = specified.

Boundary condition:

U

u'°* = gpecified,
ucyhnder _ O,
top, bottom __ 0. u—= (u U)
) » V)
prlght — 0.

UTAH

8 )

G :u(x,0) — u(x,10)

Left

Top

Right

Bottom
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Results — 2D Laminar Flow past a Cylinder U

* Triangular mesh with 9520 points.
« Example input and output functions.

Input function Output function 31

o
N
o
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Results — 2D Laminar Flow past a Cylinder

®

Relative [; error vs N at data sites Training time vs N Divergence vs N at data sites
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Results — 2D Backward-facing step U

() = [O, 15] X [—0.5,0.5]
Reynolds number range: 28 — 900.
At =0.001, T = 5.
Initial condition:
u™t =y y(05-y), 0<y<O0.5,

u =0, everywhere else
Boundary condition:

G :u(x,0) — u(x,5)

u™ = py(0.5—y), 0<y<0.5, Top
uster — 0, Inlet

ytops bottom _ 0, Step e
pright — 0. Bottom

33
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Results — 2D Backward-facing step U

* Triangular mesh with 7359 points.
* Example input and output functions.

Input function

1
0.8
0.6
0.4
0.2
0 01 02 03 04 05 0

Y Output function

1
0.8
) 0.6
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34
(1)
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0.5
—~

= 0.4

~—

S
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Magnitude

0.2

0.1
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Results — 2D Backward-facing step

Relative [, error vs N at data sites Training time vs N Divergence vs N at data sites
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