Ensemble and Mixture-of-Experts DeepONets for Operator Learning

Ramansh Sharma, Varun Shankar

Kahlert School of Computing The University of Utah

October 2, 2024

SciML - Workshop on Scientific Machine Learning

The Oden Institute for Computational Engineering and Sciences

The University of Texas at Austin

Table of Contents

Operator Learning

2 Deep Operator Network (DeepONet)

Ensemble DeepONet

4 Results

Table of Contents

Deep Operator Network (DeepONet)

• Let \mathcal{U} and \mathcal{V} be two separable function spaces.

- Let ${\mathcal U}$ and ${\mathcal V}$ be two separable function spaces.
- Data; $\{(u_i, v_i)\}, i = 1, ..., N$ where $u_i \in U$ are the input functions, and $v_i \in V$ are the output functions.

- Let ${\mathcal U}$ and ${\mathcal V}$ be two separable function spaces.
- Data; $\{(u_i, v_i)\}, i = 1, ..., N$ where $u_i \in U$ are the input functions, and $v_i \in V$ are the output functions.
- $\mathcal{G}: \mathcal{U} \to \mathcal{V}$ is the general (potentially nonlinear) operator we are interested in learning.

- Let ${\mathcal U}$ and ${\mathcal V}$ be two separable function spaces.
- Data; $\{(u_i, v_i)\}, i = 1, ..., N$ where $u_i \in U$ are the input functions, and $v_i \in V$ are the output functions.
- $\mathcal{G}: \mathcal{U} \to \mathcal{V}$ is the general (potentially nonlinear) operator we are interested in learning.
- The approximation $\hat{\mathcal{G}} : \mathcal{U} \times \Theta \to \mathcal{V}$, where the parameters Θ are picked to minimize $\|\mathcal{G} \hat{\mathcal{G}}\|$.

Examples:

Examples:

- Derivative: $u(t) \rightarrow u'(t)$
- Laplacian: $u(x, y) \rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
- Integral transform: $u(x,y) o \int_{t_1}^{t_2} u(t) K(x,t) \ dt$

Examples:

- Derivative: $\mathcal{G} : u(t) \rightarrow u'(t)$
- Laplacian: $\mathcal{G}: u(x, y) \rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
- Integral transform: $\mathcal{G}: u(x,y) \to \int_{t_1}^{t_2} u(t) \mathcal{K}(x,t) \ dt$

Table of Contents

Operator Learning

Deep Operator Network (DeepONet)

3 Ensemble DeepONet

4 Results

Conclusion

Deep Operator Network (DeepONet)

- DeepONets consist of two neural networks¹,
 - **Branch**: Nonlinear encoding of the input functions; $\beta : \mathbb{R}^{N_x} \to \mathbb{R}^{p}$.
 - **Trunk**: Nonlinear basis for the output functions; $\boldsymbol{\tau} : \mathbb{R}^{d_v} \to \mathbb{R}^{p}$.

¹ (Lu, Jin, et al. 2021)

Sharma, Shankar 2024

Deep Operator Network (DeepONet)

- DeepONets consist of two neural networks¹,
 - **Branch**: Nonlinear encoding of the input functions; $\beta : \mathbb{R}^{N_x} \to \mathbb{R}^p$.
 - **Trunk**: Nonlinear basis for the output functions; $\boldsymbol{\tau} : \mathbb{R}^{d_v} \to \mathbb{R}^{p}$.
- The DeepONet can be seen as an *p*-dimensional inner product between the branch and the trunk:

$$\hat{\mathcal{G}}(u)(y) = \langle \boldsymbol{\tau}(y), \boldsymbol{\beta}(u) \rangle + b_0,$$
 (1)

¹ (Lu, Jin, et al. 2021)

Deep Operator Network (DeepONet)

- DeepONets consist of two neural networks¹,
 - **Branch**: Nonlinear encoding of the input functions; $\beta : \mathbb{R}^{N_x} \to \mathbb{R}^p$.
 - **Trunk**: Nonlinear basis for the output functions; $\boldsymbol{\tau} : \mathbb{R}^{d_v} \to \mathbb{R}^{p}$.
- The DeepONet can be seen as an *p*-dimensional inner product between the branch and the trunk:

$$\hat{\mathcal{G}}(u)(y) = \langle \boldsymbol{\tau}(y), \boldsymbol{\beta}(u) \rangle + b_0,$$
 (1)

• $\|v_i(y) - \hat{\mathcal{G}}(u_i)(y)\|_2^2$ is minimized over *N* training function pairs.

Table of Contents

Operator Learning

Deep Operator Network (DeepONet)

Ensemble DeepONet

4 Results

Conclusion

• The PoU-MoE trunk is motivated by the partition-of-unity approximation.

- The PoU-MoE trunk is motivated by the partition-of-unity approximation.
- We partition the output function domain Ω into *P* overlapping spherical patches that form a cover of Ω ; Ω_k , k = 1, ..., P.

Sharma, Shankar 2024

- The PoU-MoE trunk is motivated by the partition-of-unity approximation.
- We partition the output function domain Ω into *P* overlapping spherical patches that form a cover of Ω ; Ω_k , k = 1, ..., P.

Sharma, Shankar 2024

• The key idea is to train a separate trunk network on each patch.

- The key idea is to train a separate trunk network on each patch.
- Then, *blend* them together to produce one global trunk.

- The key idea is to train a separate trunk network on each patch.
- Then, *blend* them together to produce one global trunk.
- The PoU-MoE trunk is written as,

$$\boldsymbol{\tau}_{PU}(\boldsymbol{y}) = \sum_{k=1}^{P} w_k(\boldsymbol{y}) \boldsymbol{\tau}_k(\boldsymbol{y}), \qquad (2)$$

where the weights functions w_k are chosen to be the compactly supported $\mathbb{C}^2(\mathbb{R}^3)$ Wendland kernel.

• The scaled and shifted Wendland kernel on patch Ω_k is given by,

$$\psi_k(y, y^c) = \psi_k\left(\frac{\|y - y_k^c\|}{\rho}\right) = \psi_k(r) = (1 - r)_+^4(4r + 1).$$
(3)

• The scaled and shifted Wendland kernel on patch Ω_k is given by,

$$\psi_k(y, y^c) = \psi_k\left(\frac{\|y - y_k^c\|}{\rho}\right) = \psi_k(r) = (1 - r)_+^4 (4r + 1).$$
(4)

• The weight functions are given by,

$$w_k(y) = \frac{\psi_k(y)}{\sum_j \psi_j(y)}, \ k, j = 1, \dots, P,$$
 (5)

• Satisfy $\sum_k w_k(y) = 1$.

• Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.

- Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.
- Properties of ${m au}_{_{\rm PU}}$

- Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.
- Properties of ${m au}_{_{\rm PU}}$
 - Is sparse in its experts τ_k .

- Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.
- Properties of ${m au}_{_{
 m PU}}$
 - Is sparse in its experts $\boldsymbol{\tau}_k$.
 - Constitutes a global set of basis functions.

- Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.
- Properties of ${m au}_{_{
 m PU}}$
 - Is sparse in its experts $\boldsymbol{\tau}_k$.
 - Constitutes a global set of basis functions.
 - Is a universal approximator.

Proper Orthogonal Decomposition (POD) Trunk

• The POD trunk ² uses the output functions' eigenvectors corresponding to the *p* smallest eigenvalues as a set of **global** basis functions.

$$\boldsymbol{\tau}_{\text{POD}}(\boldsymbol{y}) = \begin{bmatrix} \phi_1(\boldsymbol{y}) & \phi_2(\boldsymbol{y}) & \dots & \phi_p(\boldsymbol{y}) \end{bmatrix}, \qquad (6)$$

² (Lu, Meng, et al. 2022)

Proper Orthogonal Decomposition (POD) Trunk

• The POD trunk ² uses the output functions' eigenvectors corresponding to the *p* smallest eigenvalues as a set of **global** basis functions.

$$\boldsymbol{\tau}_{\text{POD}}(\boldsymbol{y}) = \begin{bmatrix} \phi_1(\boldsymbol{y}) & \phi_2(\boldsymbol{y}) & \dots & \phi_p(\boldsymbol{y}) \end{bmatrix}, \tag{6}$$

• In this work, we use a **"Modified-POD"** trunk that includes the mean function ϕ_0 in the set of basis functions.

$$\boldsymbol{\tau}_{\text{Modified-POD}}(\boldsymbol{y}) = \begin{bmatrix} \phi_0(\boldsymbol{y}) & \phi_1(\boldsymbol{y}) & \dots & \phi_{p-1}(\boldsymbol{y}) \end{bmatrix},\tag{7}$$

• Goal: Use both local and global basis functions in the DeepONet.

- Goal: Use both local and global basis functions in the DeepONet.
- We propose the **ensemble trunk** which uses multiple types of basis functions.

- Goal: Use both local and global basis functions in the DeepONet.
- We propose the **ensemble trunk** which uses multiple types of basis functions.
- Example, given three trunk networks, τ_1, τ_2, τ_3 .

- Goal: Use both local and global basis functions in the DeepONet.
- We propose the **ensemble trunk** which uses multiple types of basis functions.
- Example, given three trunk networks, τ_1, τ_2, τ_3 .

$$\hat{\mathcal{G}}(u, y) = \left\langle \underbrace{[\boldsymbol{\tau}_1(y), \boldsymbol{\tau}_2(y), \boldsymbol{\tau}_3(y)]}_{\text{Ensemble trunk}}, \hat{\boldsymbol{\beta}}(u) \right\rangle + b_0, \tag{8}$$

- Goal: Use both local and global basis functions in the DeepONet.
- We propose the ensemble trunk which uses multiple types of basis functions.
- Example, given three trunk networks, *τ*₁, *τ*₂, *τ*₃.

$$\hat{\mathcal{G}}(u, y) = \left\langle \underbrace{[\boldsymbol{\tau}_1(y), \boldsymbol{\tau}_2(y), \boldsymbol{\tau}_3(y)]}_{\text{Ensemble trunk}}, \hat{\boldsymbol{\beta}}(u) \right\rangle + b_0, \tag{8}$$

where

 $oldsymbol{ au}_1 : \mathbb{R}^{d_v} o \mathbb{R}^{p_1}, oldsymbol{ au}_2 : \mathbb{R}^{d_v} o \mathbb{R}^{p_2}, oldsymbol{ au}_3 : \mathbb{R}^{d_v} o \mathbb{R}^{p_3}$ $oldsymbol{eta} : \mathbb{R}^{N_x} o \mathbb{R}^{p_1+p_2+p_3}$

- Goal: Use both local and global basis functions in the DeepONet.
- We propose the ensemble trunk which uses multiple types of basis functions.
- Example, given three trunk networks, τ_1, τ_2, τ_3 .

$$\hat{\mathcal{G}}(u, y) = \left\langle \underbrace{[\boldsymbol{\tau}_1(y), \boldsymbol{\tau}_2(y), \boldsymbol{\tau}_3(y)]}_{\text{Ensemble trunk}}, \hat{\boldsymbol{\beta}}(u) \right\rangle + b_0, \tag{8}$$

where

- $oldsymbol{ au}_1: \mathbb{R}^{d_v} o \mathbb{R}^{p_1}, oldsymbol{ au}_2: \mathbb{R}^{d_v} o \mathbb{R}^{p_2}, oldsymbol{ au}_3: \mathbb{R}^{d_v} o \mathbb{R}^{p_3}$ $oldsymbol{eta}: \mathbb{R}^{N_x} o \mathbb{R}^{p_1+p_2+p_3}$
- The ensemble trunk is also a universal approximator.
What makes a good ensemble trunk?

• Vanilla-POD: Adding POD modes.

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).
- POD-PoU: Both POD global modes and PoU-MoE local expertise.

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).
- POD-PoU: Both POD global modes and PoU-MoE local expertise.
- Vanilla-POD-PoU: Adding a vanilla trunk (extra trainable parameters) to a POD-PoU ensemble.

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).
- POD-PoU: Both POD global modes and PoU-MoE local expertise.
- Vanilla-POD-PoU: Adding a vanilla trunk (extra trainable parameters) to a POD-PoU ensemble.
- (*P* + 1)-Vanilla: Simple overparametrization. We use *P* + 1 vanilla trunks in this model, where *P* is the number of PoU-MoE patches.

POD-PoU Ensemble

Table of Contents

Operator Learning

Deep Operator Network (DeepONet)

3 Ensemble DeepONet

2D Darcy Flow

$$-\nabla \cdot (\mathcal{K}(y) \nabla u(y)) = f(y), \ y \in \Omega,$$

$$u(y) \sim \mathcal{GP} \left(0, \mathcal{K}(y_1, y_1')\right),$$
(10)

• K(y) is the permeability field.

2D Darcy Flow

$$-\nabla \cdot (\mathcal{K}(y) \nabla u(y)) = f(y), \ y \in \Omega,$$

$$u(y) \sim \mathcal{GP}(0, \mathcal{K}(y_1, y_1')),$$
(10)

- K(y) is the permeability field.
- Ω was a triangular domain.
- **Goal:** learn the solution operator $\mathcal{G} : u(y)|_{\partial\Omega} \to u(y)|_{\Omega}$.

2D Darcy Flow

2D Lid-driven Cavity Flow

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla \mathbf{p} + \nu \Delta \mathbf{u}, \quad \nabla \cdot \mathbf{u} = 0, \ y \in \Omega, \ t \in T,$$
(11)
$$\mathbf{u} = \mathbf{u}_b,$$
(12)

2D Lid-driven Cavity Flow

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla \mathbf{p} + \nu \Delta \mathbf{u}, \quad \nabla \cdot \mathbf{u} = 0, \ y \in \Omega, \ t \in T,$$
(11)
$$\mathbf{u} = \mathbf{u}_b,$$
(12)

- $\Omega = [0, 1]^2$.
- **Goal:** learn the solution operator $\mathcal{G} : \mathbf{u}_b \to \mathbf{u}$.

2D Lid-driven Cavity Flow

$$\frac{\partial c}{\partial t} = k_{\rm on} \left(R - c \right) c_{\rm amb} - k_{\rm off} \ c + \nu \Delta c, \ y \in \Omega, \ t \in T, \tag{13}$$

$$\nu \frac{\partial c}{\partial n} = 0, \ y \in \partial \Omega, \tag{14}$$

$$c(y,0) \sim \mathcal{U}(0,1). \tag{15}$$

• k_{on} and k_{off} are constants, and $c_{amb}(y, t)$ is a background source of the chemical.

$$\frac{\partial c}{\partial t} = k_{\rm on} \left(R - c \right) c_{\rm amb} - k_{\rm off} \ c + \nu \Delta c, \ y \in \Omega, \ t \in T, \tag{13}$$

$$\nu \frac{\partial c}{\partial n} = 0, \ y \in \partial \Omega, \tag{14}$$

$$c(y,0) \sim \mathcal{U}(0,1). \tag{15}$$

• k_{on} and k_{off} are constants, and $c_{amb}(y, t)$ is a background source of the chemical.

• $\Omega = [0, 2]^2$ and T = [0, 0.5].

$$\frac{\partial c}{\partial t} = k_{\rm on} \left(R - c \right) c_{\rm amb} - k_{\rm off} \ c + \nu \Delta c, \ y \in \Omega, \ t \in T, \tag{13}$$

$$\nu \frac{\partial c}{\partial n} = 0, \ \gamma \in \partial \Omega, \tag{14}$$

$$c(y,0) \sim \mathcal{U}(0,1). \tag{15}$$

- k_{on} and k_{off} are constants, and $c_{amb}(y, t)$ is a background source of the chemical.
- $\Omega = [0, 2]^2$ and T = [0, 0.5].
- We choose k_{on} and k_{off} to introduce a sharp spatial discontinuity in the solution at $y_1 = 1$.

$$k_{\rm on} = \begin{cases} 2, & y_1 \le 1.0, \\ 0, & \text{otherwise} \end{cases}, \quad k_{\rm off} = \begin{cases} 0.2, & y_1 \le 1.0, \\ 0, & \text{otherwise} \end{cases},$$
(16)

• **Goal:** learn the solution operator \mathcal{G} : $c(y, 0) \rightarrow c(y, 0.5)$.

Spatial Locality

- Basis functions corresponding to the largest branch coefficients, i.e., the most "important" basis functions.
- The PoU basis spatially varies significantly more than the vanilla basis.
- The PoU-MoE trunk learns spatially local features, which improves accuracy.

$$\begin{aligned} \frac{\partial c}{\partial t} &= k_{\text{on}} \left(R - c \right) c_{\text{amb}} - k_{\text{off}} \ c + \nabla \cdot \left(K(y) \nabla c \right), \ y \in \Omega, \ t \in T, \end{aligned} \tag{17} \\ K(y) \frac{\partial c}{\partial n} &= 0, y \in \partial \Omega, \\ c(y,0) \sim \mathcal{U}(0,1). \end{aligned}$$

$$\frac{\partial c}{\partial t} = k_{\text{on}} \left(R - c \right) c_{\text{amb}} - k_{\text{off}} c + \nabla \cdot \left(\mathcal{K}(y) \nabla c \right), \ y \in \Omega, \ t \in \mathcal{T},$$

$$\mathcal{K}(y) \frac{\partial c}{\partial n} = 0, y \in \partial\Omega,$$
(18)

$$c(y,0) \sim \mathcal{U}(0,1). \tag{19}$$

• Ω was the unit ball, and T = [0, 0.5].

$$\frac{\partial c}{\partial t} = k_{\text{on}} \left(R - c \right) c_{\text{amb}} - k_{\text{off}} c + \nabla \cdot \left(K(y) \nabla c \right), \ y \in \Omega, \ t \in T,$$

$$K(y) \frac{\partial c}{\partial n} = 0, \ y \in \partial \Omega,$$
(17)
(17)
(18)

$$c(y,0) \sim \mathcal{U}(0,1). \tag{19}$$

- Ω was the unit ball, and T = [0, 0.5].
- Sharp point of discontinuity at $y_1 = 0$.

$$\frac{\partial c}{\partial t} = k_{\rm on} \left(R - c \right) c_{\rm amb} - k_{\rm off} \ c + \nabla \cdot \left(\mathcal{K}(y) \nabla c \right), \ y \in \Omega, \ t \in T,$$
(17)

$$K(y)\frac{\partial c}{\partial n} = 0, y \in \partial\Omega, \tag{18}$$

$$c(y,0) \sim \mathcal{U}(0,1). \tag{19}$$

• Ω was the unit ball, and T = [0, 0.5].

0

- Sharp point of discontinuity at $y_1 = 0$.
- K(y) was chosen to introduce steep gradients in the diffusion term, defined as.

$$K(y) = B + \frac{C}{\tanh(A)} \left((A-3) \tanh(8y_1 - 5) - (A-15) \tanh(8y_1 + 5) + A \tanh(A) \right),$$
(20)

where A = 9, B = 0.0215, and C = 0.005.

• **Goal:** learn the solution operator $\mathcal{G} : c(y, 0) \rightarrow c(y, 0.5)$.

28/44

Insights

Trunk Choices	Darcy flow	Cavity flow	2D RD	3D RD
	Var	NL-	NI-	NI-
POD global modes	res	INO	INO	INO
modified POD global modes	Yes	No	No	No
Adding POD global modes	Yes	Yes	Yes	No
Adding spatial locality	No	Yes	Yes	No
Only POD global modes + spatial locality	Yes	Yes	Yes	Yes
Only POD global modes + spatial locality + vanilla trunk	Yes	Yes	Yes	No
Adding excessive overparametrization	No	Yes	Yes	No

Insights

Trunk Choices	Darcy flow	Cavity flow	2D RD	3D RD
POD global modes	Yes	No	No	No
modified POD global modes	Yes	No	No	No
Adding POD global modes	Yes	Yes	Yes	No
Adding spatial locality	No	Yes	Yes	No
Only POD global modes + spatial locality	Yes	Yes	Yes	Yes
Only POD global modes + spatial locality	Yes	Yes	Yes	No
+ vanilla trunk				
Adding excessive overparametrization	No	Yes	Yes	No

• Yes/no refers to whether the strategy beats a vanilla-DeepONet, bold refers to the best accuracy.

Insights

Trunk Choices	Darcy flow	Cavity flow	2D RD	3D RD
POD global modes	Yes	No	No	No
modified POD global modes	Yes	No	No	No
Adding POD global modes	Yes	Yes	Yes	No
Adding spatial locality	No	Yes	Yes	No
Only POD global modes + spatial locality	Yes	Yes	Yes	Yes
Only POD global modes + spatial locality	Yes	Yes	Yes	No
+ vanilla trunk				
Adding excessive overparametrization	No	Yes	Yes	No

• Yes/no refers to whether the strategy beats a vanilla-DeepONet, bold refers to the best accuracy.

• Answers the question, "What makes a good ensemble trunk?"

Table of Contents

Operator Learning

Deep Operator Network (DeepONet)

Ensemble DeepONet

• The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.

- The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.
- The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems (2-4x accuracy improvement).

- The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.
- The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems (2-4x accuracy improvement).
- Simple overparametrization ((P + 1)-Vanilla DeepONet) is not enough and sometimes deteriorates accuracy; a judicial combination of localized and global basis functions is vital.

- The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.
- The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems (2-4x accuracy improvement).
- Simple overparametrization ((P + 1)-Vanilla DeepONet) is not enough and sometimes deteriorates accuracy; a judicial combination of localized and global basis functions is vital.
- The novel PoU-MoE trunk captures spatially local features.

- The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.
- The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems (2-4x accuracy improvement).
- Simple overparametrization ((P + 1)-Vanilla DeepONet) is not enough and sometimes deteriorates accuracy; a judicial combination of localized and global basis functions is vital.
- The novel PoU-MoE trunk captures spatially local features.
- The PoU-MoE trunk brings expressivity in problems with steep gradients in either the input or output functions.

Future work

Future work

• Extend PoU-MoE to adaptive partitioning strategies (trainable patch centers and patch radii, trainable patch shape).
Future work

- Extend PoU-MoE to adaptive partitioning strategies (trainable patch centers and patch radii, trainable patch shape).
- Ensemble learning for other neural operators (FNO, GNO, etc.).

Thank you

Ramansh Sharma and Varun Shankar. **"Ensemble and Mixture-of-Experts DeepONets for Operator Learning**". https://arxiv.org/abs/2405.11907. 2024.

Bibliography

- Lu, Lu, Pengzhan Jin, et al. (Mar. 2021). "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators". en. In: *Nature Machine Intelligence* 3.3. Publisher: Nature Publishing Group, pp. 218–229. ISSN: 2522-5839. DOI: 10.1038/s42256-021-00302-5.
- Lu, Lu, Xuhui Meng, et al. (Apr. 2022). "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data". In: *Computer Methods in Applied Mechanics and Engineering* 393, p. 114778. ISSN: 0045-7825. DOI: 10.1016/j.cma.2022.114778.

Error calculations

- For all experiments, we first computed the relative l_2 error for each test function, $e_{\ell_2} = \frac{\|\underline{\tilde{u}} - \underline{u}\|_2}{\|\underline{u}\|_2}$ where \underline{u} was the true solution vector and $\underline{\tilde{u}}$ was the DeepONet prediction vector; we then computed the mean over those relative ℓ_2 errors.
- We also report a squared error (MSE) between the DeepONet prediction and the true solution averaged over N functions $e_{mse}(y) = \frac{1}{N} (\tilde{u}(y) u(y))^2$.

Other results

Relative l_2 errors (as percentage) on the test dataset for the 2D **Darcy flow**, **cavity flow**, and **reaction-diffusion** problems, and the 3D **reaction-diffusion** problem. RD stands for reaction-diffusion.

	Darcy flow	Cavity flow	2D RD	3D RD
Vanilla	0.857 ± 0.08	5.53 ± 1.05	0.144 ± 0.01	0.127 ± 0.03
POD	0.297 ± 0.01	$7.94\pm 2e-5$	$5.06\pm8e-7$	9.40 ± 8
Modified-POD	0.300 ± 0.04	$7.93\pm 2e-5$	$0.131 \pm 4e - 5$	$0.155\pm4e-5$
(Vanilla, POD)	0.227 ± 0.03	0.310 ± 0.03	$0.0751\pm4e-5$	5.24 ± 10.4
(P + 1)-Vanilla	1.19 ± 0.06	2.17 ± 0.3	0.0644 ± 0.02	5.25 ± 10.3
(Vanilla, PoU)	0.976 ± 0.03	1.06 ± 0.05	0.0946 ± 0.03	5.25 ± 10.3
(POD, PoU)	0.204 ± 0.02	$\textbf{0.204} \pm \textbf{0.01}$	$0.0539 \pm 4e-5$	$\textbf{0.0576} \pm \textbf{0.05}$
(Vanilla, POD, PoU)	0.187 ± 0.02	0.229 ± 0.01	$0.0666\pm 8e-5$	5.22 ± 10.4

Runtime results

	Darcy flow	Cavity flow	2D RD	3D RD
Vanilla	8.93 <i>e</i> − 4	3.99 <i>e</i> − 4	2.97 <i>e</i> − 4	2.10 <i>e</i> − 4
POD	5.19 <i>e</i> – 4	2.46 <i>e</i> − 4	2.06 <i>e</i> − 4	1.22 <i>e</i> − 4
Modified-POD	6.86 <i>e</i> – 4	2.49e - 4	2.08e - 4	1.22e - 4
(Vanilla, POD)	9.80e - 4	3.92e - 4	3.03e - 4	2.32e - 4
(P + 1)-Vanilla	1.10 <i>e</i> – 3	8.51 <i>e</i> − 4	7.27 <i>e</i> – 4	9.45 <i>e</i> − 4
Vanilla-PoU	8.67 <i>e</i> − 4	9.52 <i>e</i> − 4	1.03 <i>e</i> - 3	1.39 <i>e</i> – 3
POD-PoU	6.74 <i>e</i> – 4	8.21 <i>e</i> − 4	9.24 <i>e</i> − 4	1.28 <i>e</i> − 3
Vanilla-POD-PoU	8.55e - 4	9.48e - 4	1.05e - 3	1.43 <i>e</i> − 3

Table: Average time per training epoch in seconds. RD stands for reaction-diffusion.

Runtime results

	Darcy flow	Cavity flow	2D RD	3D RD
Vanilla	1.66 <i>e</i> – 4	1.39 <i>e</i> − 4	1.32 <i>e</i> − 4	7.20e - 5
POD	1.57 <i>e</i> – 4	1.12 <i>e</i> – 4	1.12 <i>e</i> – 4	6.42e - 5
Modified-POD	1.34 <i>e</i> − 4	1.08e - 4	9.94 <i>e</i> - 5	6.62e - 5
(Vanilla, POD)	1.69 <i>e</i> – 4	1.33e - 4	1.20e - 4	7.76e - 5
(P + 1)-Vanilla	2.08e - 4	2.12 <i>e</i> − 4	1.71 <i>e</i> − 4	1.48e - 4
Vanilla-PoU	1.91 <i>e</i> – 4	2.42e - 4	2.21 <i>e</i> − 4	2.37e - 4
POD-PoU	1.63 <i>e</i> – 4	1.94 <i>e</i> – 4	1.96 <i>e</i> – 4	2.30e - 4
Vanilla-POD-PoU	2.00e - 4	2.18 <i>e</i> – 4	2.28e - 4	2.41 <i>e</i> − 4

Table: Inference time on the test dataset in seconds. RD stands for reaction-diffusion.

Universal Approximation Theorem - PoU-MoE Trunk

Theorem

Let
$$\mathcal{G} : \mathcal{U} \to \mathcal{V}$$
 be a continuous operator. Define \mathcal{G}^{\dagger} as
 $\mathcal{G}^{\dagger}(u)(y) = \left\langle \beta(u; \theta_b), \sum_{j=1}^{p} w_j(y) \tau_j(y; \theta_{\tau_j}) \right\rangle + b_0$, where $\beta : \mathbb{R}^{N_x} \times \Theta_\beta \to \mathbb{R}^p$ is a branch
network embedding the input function $u, \tau_j : \mathbb{R}^{d_v} \times \Theta_{\tau_j} \to \mathbb{R}^p$ are trunk networks, b_0 is a bias,
and $w_j : \mathbb{R}^{d_v} \to \mathbb{R}$ are compactly-supported, positive-definite weight functions that satisfy the
partition of unity condition $\sum_j w_j(y) = 1, j = 1, \dots, P$. Then \mathcal{G}^{\dagger} can approximate \mathcal{G} globally to
any desired accuracy, *i.e.*,

$$\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y) \|_{\mathcal{V}} \le \epsilon,$$
 (21)

where $\epsilon > 0$ can be made arbitrarily small.

Universal Approximation Theorem - PoU-MoE Trunk

Proof

$$\begin{split} \|\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y)\|_{\mathcal{V}} &= \left\| \mathcal{G}(u)(y) - \left\langle \beta(u;\theta_b), \sum_{j=1}^{p} w_j(y)\tau_j(y;\theta_{\tau_j}) \right\rangle - b_0 \right\|_{\mathcal{V}}, \\ &= \left\| \underbrace{\left(\sum_{j=1}^{p} w_j(y)\right)}_{=1} \mathcal{G}(u)(y) - \left\langle \beta(u;\theta_b), \sum_{j=1}^{p} w_j(y)\tau_j(y;\theta_{\tau_j}) \right\rangle \\ &- \underbrace{\left(\sum_{j=1}^{p} w_j(y)\right)}_{=1} b_0 \right\|_{\mathcal{V}}, \\ &= \left\| \sum_{j=1}^{p} w_j(y) \left(\mathcal{G}(u)(y) - \left\langle \beta(u;\theta_b), \tau_j(y;\theta_{\tau_j}) \right\rangle - b_0 \right) \right\|_{\mathcal{V}}, \\ &\leq \sum_{j=1}^{p} w_j(y) \|\mathcal{G}(u)(y) - \left\langle \beta(u;\theta_b), \tau_j(y;\theta_{\tau_j}) \right\rangle - b_0 \|_{\mathcal{V}}. \end{split}$$

Universal Approximation Theorem - PoU-MoE Trunk

Given a branch network β that can approximate functionals to arbitrary accuracy, the (generalized) universal approximation theorem for operators automatically implies that a trunk network τ_j (given sufficient capacity and proper training) can approximate the restriction of \mathcal{G} to the support of $w_i(\mathbf{y})$ such that:

$$\|\mathcal{G}(u)(y) - \langle \boldsymbol{\beta}(u; \theta_b), \boldsymbol{\tau}_j(y; \theta_{\boldsymbol{\tau}_j}) \rangle - b_0 \|_{\mathcal{V}} \leq \epsilon_j,$$

for all y in the support of w_j and any $\epsilon_j > 0$. Setting $\epsilon_j = \epsilon, j = 1, \ldots, P$, we obtain:

$$\begin{split} \|\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y)\|_{\mathcal{V}} &\leq \epsilon \sum_{\substack{j=1\\ =1}}^{p} w_{i}(y), \\ & \longrightarrow \|\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y)\|_{\mathcal{V}} \leq \epsilon. \end{split}$$

where $\epsilon > 0$ can be made arbitrarily small. This completes the proof.

Universal Approximation Theorem - Ensemble Trunk

Theorem

Let $\mathcal{G}: \mathcal{U} \to \mathcal{V}$ be a continuous operator. Define $\hat{\mathcal{G}}$ as $\hat{\mathcal{G}}(u, y) = \langle \hat{\tau}(y; \theta_{\tau_1}; \theta_{\tau_2}; \theta_{\tau_3}), \hat{\beta}(u; \theta_b) \rangle + b_0$, where $\hat{\beta}: \mathbb{R}^{N_x} \times \Theta_{\hat{\beta}} \to \mathbb{R}^{p_1 + p_2 + p_3}$ is a branch network embedding the input function u, b_0 is the bias, and $\hat{\tau}: \mathbb{R}^{d_v} \times \Theta_{\hat{\tau}_1} \times \Theta_{\hat{\tau}_2} \times \Theta_{\hat{\tau}_3} \to \mathbb{R}^{p_1 + p_2 + p_3}$ is an ensemble trunk network. Then $\hat{\mathcal{G}}$ can approximate \mathcal{G} globally to any desired accuracy, i.e.,

$$\|\mathcal{G}(u)(y) - \hat{\mathcal{G}}(u)(y)\|_{\mathcal{V}} \le \epsilon,$$
(22)

where $\epsilon > 0$ can be made arbitrarily small.

Proof.

This follows from the (generalized) universal approximation theorem^{α} which holds for arbitrary branches and trunks.

^aLu, Jin, et al. 2021.

Ensemble FNO

- FNOs consist of a *lifting* operator, a *projection* operator, and intermediate Fourier layers consisting of kernel-based integral operators.
- f_t denotes the intermediate function at the t^{th} Fourier layer. Then, f_{t+1} is given by

$$f_{t+1}(y) = \sigma\left(\int_{\Omega} \mathcal{K}(x, y) f_t(x) dx + W f_t(y)\right), x \in \Omega,$$
(23)

where σ is an activation function, ${\cal K}$ is a matrix-valued kernel, and W is the pointwise convolution.

- This is a projection of $f_t(x)$ onto a set of *global* Fourier modes.
- Incorporating a set of localized basis functions in an ensemble FNO using the PoU-MoE formulation:

$$f_{t+1}(y) = \sigma \left(\underbrace{\int_{\Omega} \mathcal{K}(x, y) f_t(x) \, dx}_{\text{Global basis}} + \underbrace{\sum_{k=1}^{p} w_k(y) \int_{\Omega_k} \mathcal{K}(x, y) \, f_t(x)|_{\Omega_k} \, dx}_{\text{Localized basis}} + W f_t(y) \right),$$
(24)

• The PoU-MoE formulation now combines a set of *localized* integrals, each of which is a projection of *f*_t onto a local Fourier basis.

Ensemble DeepONets