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Operator Learning

Let U and V be two separable function spaces.

Data; {(ui, vi)}, i = 1, . . . ,N where ui ∈ U are the input functions, and vi ∈ V are the

output functions.

G : U → V is the general (potentially nonlinear) operator we are interested in learning.

The approximation Ĝ : U ×Θ → V , where the parameters Θ are picked to minimize

∥G − Ĝ∥.
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The approximation Ĝ : U ×Θ → V , where the parameters Θ are picked to minimize

∥G − Ĝ∥.
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Sharma, Shankar 2024 Ensemble DeepONets October 2, 2024 4 / 44



Operator Learning

Let U and V be two separable function spaces.

Data; {(ui, vi)}, i = 1, . . . ,N where ui ∈ U are the input functions, and vi ∈ V are the

output functions.

G : U → V is the general (potentially nonlinear) operator we are interested in learning.
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Operator Learning

Examples:

Derivative: u(t) → u′(t)

Laplacian: u(x, y) → ∂2f
∂x2 +

∂2f
∂y2

Integral transform: u(x, y) →
∫ t2
t1
u(t)K(x, t) dt
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Deep Operator Network (DeepONet)

DeepONets consist of two neural networks
1

,

Branch: Nonlinear encoding of the input functions; β : RNx → Rp
.

Trunk: Nonlinear basis for the output functions; τ : Rdv → Rp
.

The DeepONet can be seen as an p-dimensional inner product between the branch and

the trunk:

Ĝ(u)(y) = ⟨τ (y),β(u)⟩+ b0, (1)

∥vi(y)− Ĝ(ui)(y)∥22 is minimized over N training function pairs.

1

(Lu, Jin, et al. 2021)

Sharma, Shankar 2024 Ensemble DeepONets October 2, 2024 8 / 44



Deep Operator Network (DeepONet)

DeepONets consist of two neural networks
1

,

Branch: Nonlinear encoding of the input functions; β : RNx → Rp
.

Trunk: Nonlinear basis for the output functions; τ : Rdv → Rp
.

The DeepONet can be seen as an p-dimensional inner product between the branch and

the trunk:
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

The PoU-MoE trunk is motivated by the partition-of-unity approximation.

We partition the output function domain Ω into P overlapping spherical patches that

form a cover of Ω; Ωk , k = 1, . . . , P .
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

The key idea is to train a separate trunk network on each patch.

Then, blend them together to produce one global trunk.

The PoU-MoE trunk is written as,

τ
PU
(y) =

P∑
k=1

wk(y)τ k(y), (2)

where the weights functions wk are chosen to be the compactly supported C2

(
R3

)
Wendland kernel.
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

The scaled and shifted Wendland kernel on patch Ωk is given by,

ψk(y, y
c) = ψk

(
∥y − yc

k∥
ρ

)
= ψk(r) = (1− r)4+(4r + 1). (3)
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ψk(y, y
c) = ψk

(
∥y − yc

k∥
ρ

)
= ψk(r) = (1− r)4+(4r + 1). (4)

The weight functions are given by,

wk(y) =
ψk(y)∑
j ψj(y)

, k, j = 1, . . . , P, (5)

Satisfy

∑
k wk(y) = 1.
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Partition-of-Unity Mixture-of-Experts (PoU-MoE) Trunk

Each patch’s trunk τ k can be viewed as a spatially local “expert”.

Properties of τ
PU

Is sparse in its experts τ k .

Constitutes a global set of basis functions.

Is a universal approximator.
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Proper Orthogonal Decomposition (POD) Trunk

The POD trunk
2

uses the output functions’ eigenvectors corresponding to the p
smallest eigenvalues as a set of global basis functions.

τ
POD

(y) =
[
ϕ1(y) ϕ2(y) . . . ϕp(y)

]
, (6)

In this work, we use a “Modified-POD” trunk that includes the mean function ϕ0 in the

set of basis functions.

τ
Modified-POD

(y) =
[
ϕ0(y) ϕ1(y) . . . ϕp−1(y)

]
, (7)

2

(Lu, Meng, et al. 2022)
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Ensemble DeepONet

Goal: Use both local and global basis functions in the DeepONet.

We propose the ensemble trunk which uses multiple types of basis functions.

Example, given three trunk networks, τ 1, τ 2, τ 3.

Ĝ(u, y) =

〈
[τ 1(y), τ 2(y), τ 3(y)]︸ ︷︷ ︸

Ensemble trunk

, β̂(u)

〉
+ b0, (8)

where

τ 1 : Rdv → Rp1 , τ 2 : Rdv → Rp2 , τ 3 : Rdv → Rp3

β : RNx → Rp1+p2+p3

The ensemble trunk is also a universal approximator.
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Ensemble architectures

What makes a good ensemble trunk?

Vanilla-POD: Adding POD modes.

Vanilla-PoU: Adding spatial locality (PoU-MoE).

POD-PoU: Both POD global modes and PoU-MoE local expertise.

Vanilla-POD-PoU: Adding a vanilla trunk (extra trainable parameters) to a POD-PoU

ensemble.

(P + 1)-Vanilla: Simple overparametrization. We use P + 1 vanilla trunks in this model,

where P is the number of PoU-MoE patches.
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POD-PoU Ensemble
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2D Darcy Flow

−∇ · (K(y)∇u(y)) = f (y), y ∈ Ω, (9)

u(y) ∼ GP
(
0,K(y1, y

′
1
)
)
, (10)

K(y) is the permeability field.

Ω was a triangular domain.

Goal: learn the solution operator G : u(y)|∂Ω → u(y)|Ω.
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2D Darcy Flow

Vanilla Vanilla-POD-PoU (POD, PoU)

Relative l2 error 0.857± 0.08 0.187± 0.02 0.204± 0.02
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2D Lid-driven Cavity Flow

∂u
∂t

+ (u · ∇)u = −∇p+ ν∆u, ∇ · u = 0, y ∈ Ω, t ∈ T , (11)

u = ub, (12)

Ω = [0, 1]2.

Goal: learn the solution operator G : ub → u.
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2D Lid-driven Cavity Flow

Vanilla Vanilla-POD-PoU (POD, PoU)

Relative l2 error 5.53± 1.05 0.229± 0.01 0.204± 0.01
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2D Reaction-Diffusion

∂c
∂t

= kon (R − c) camb − koff c + ν∆c, y ∈ Ω, t ∈ T , (13)

ν
∂c
∂n

= 0, y ∈ ∂Ω, (14)

c(y, 0) ∼ U(0, 1). (15)

kon and koff are constants, and camb(y, t) is a background source of the chemical.

Ω = [0, 2]2 and T = [0, 0.5].

We choose kon and koff to introduce a sharp spatial discontinuity in the solution at

y1 = 1.

kon =

{
2, y1 ≤ 1.0,

0, otherwise

, koff =

{
0.2, y1 ≤ 1.0,

0, otherwise

, (16)

Goal: learn the solution operator G : c(y, 0) → c(y, 0.5).
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2D Reaction-Diffusion

Vanilla (P + 1)-Vanilla (POD, PoU)

Relative l2 error 0.144± 0.01 0.0644± 0.02 0.0539± 4e− 5
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Spatial Locality

Basis functions corresponding to the largest branch coefficients, i.e., the most

“important” basis functions.

The PoU basis spatially varies significantly more than the vanilla basis.

The PoU-MoE trunk learns spatially local features, which improves accuracy.
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3D Variable-Coefficient Reaction-Diffusion

∂c
∂t

= kon (R − c) camb − koff c +∇ · (K(y)∇c) , y ∈ Ω, t ∈ T , (17)

K(y)
∂c
∂n

= 0, y ∈ ∂Ω, (18)

c(y, 0) ∼ U(0, 1). (19)

Ω was the unit ball, and T = [0, 0.5].

Sharp point of discontinuity at y1 = 0.

K(y) was chosen to introduce steep gradients in the diffusion term, defined as.

K(y) = B+
C

tanh(A)
((A− 3) tanh(8y1 − 5)− (A− 15) tanh(8y1 + 5) + A tanh(A)) ,

(20)

where A = 9, B = 0.0215, and C = 0.005.

Goal: learn the solution operator G : c(y, 0) → c(y, 0.5).
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3D Variable-Coefficient Reaction-Diffusion

Vanilla Modified-POD (POD, PoU)

Relative l2 error 0.127± 0.03 0.155± 4e − 5 0.0576± 0.05
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Insights

Trunk Choices Darcy flow Cavity flow 2D RD 3D RD

POD global modes Yes No No No

modified POD global modes Yes No No No

Adding POD global modes Yes Yes Yes No

Adding spatial locality No Yes Yes No

Only POD global modes + spatial locality Yes Yes Yes Yes
Only POD global modes + spatial locality Yes Yes Yes No

+ vanilla trunk

Adding excessive overparametrization No Yes Yes No

Yes/no refers to whether the strategy beats a vanilla-DeepONet, bold refers to the best

accuracy.

Answers the question, "What makes a good ensemble trunk?"
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Conclusion

The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.

The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems

(2-4x accuracy improvement).

Simple overparametrization ((P + 1)-Vanilla DeepONet) is not enough and sometimes

deteriorates accuracy; a judicial combination of localized and global basis
functions is vital.

The novel PoU-MoE trunk captures spatially local features.

The PoU-MoE trunk brings expressivity in problems with steep gradients in either the

input or output functions.
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Future work

Extend PoU-MoE to adaptive partitioning strategies (trainable patch centers and patch

radii, trainable patch shape).

Ensemble learning for other neural operators (FNO, GNO, etc.).
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Thank you

Ramansh Sharma and Varun Shankar. “Ensemble and Mixture-of-Experts DeepONets
for Operator Learning”. https://arxiv.org/abs/2405.11907. 2024.
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Error calculations

For all experiments, we first computed the relative l2 error for each test function,

eℓ2 =
∥ũ−u∥2
∥u∥2 where u was the true solution vector and ũ was the DeepONet prediction

vector; we then computed the mean over those relative ℓ2 errors.

We also report a squared error (MSE) between the DeepONet prediction and the true

solution averaged over N functions emse(y) = 1

N (ũ(y)− u(y))2 .
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Other results

Relative l2 errors (as percentage) on the test dataset for the 2D Darcy flow, cavity flow, and

reaction-diffusion problems, and the 3D reaction-diffusion problem. RD stands for

reaction-diffusion.

Darcy flow Cavity flow 2D RD 3D RD

Vanilla 0.857± 0.08 5.53± 1.05 0.144± 0.01 0.127± 0.03
POD 0.297± 0.01 7.94± 2e − 5 5.06± 8e − 7 9.40± 8

Modified-POD 0.300± 0.04 7.93± 2e − 5 0.131± 4e − 5 0.155± 4e − 5

(Vanilla, POD) 0.227± 0.03 0.310± 0.03 0.0751± 4e − 5 5.24± 10.4
(P + 1)-Vanilla 1.19± 0.06 2.17± 0.3 0.0644± 0.02 5.25± 10.3
(Vanilla, PoU) 0.976± 0.03 1.06± 0.05 0.0946± 0.03 5.25± 10.3
(POD, PoU) 0.204± 0.02 0.204± 0.01 0.0539± 4e− 5 0.0576± 0.05

(Vanilla, POD, PoU) 0.187± 0.02 0.229± 0.01 0.0666± 8e − 5 5.22± 10.4
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Runtime results

Table: Average time per training epoch in seconds. RD stands for reaction-diffusion.

Darcy flow Cavity flow 2D RD 3D RD

Vanilla 8.93e − 4 3.99e − 4 2.97e − 4 2.10e − 4

POD 5.19e − 4 2.46e − 4 2.06e − 4 1.22e − 4

Modified-POD 6.86e − 4 2.49e − 4 2.08e − 4 1.22e − 4

(Vanilla, POD) 9.80e − 4 3.92e − 4 3.03e − 4 2.32e − 4

(P + 1)-Vanilla 1.10e − 3 8.51e − 4 7.27e − 4 9.45e − 4

Vanilla-PoU 8.67e − 4 9.52e − 4 1.03e − 3 1.39e − 3

POD-PoU 6.74e − 4 8.21e − 4 9.24e − 4 1.28e − 3

Vanilla-POD-PoU 8.55e − 4 9.48e − 4 1.05e − 3 1.43e − 3
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Runtime results

Table: Inference time on the test dataset in seconds. RD stands for reaction-diffusion.

Darcy flow Cavity flow 2D RD 3D RD

Vanilla 1.66e − 4 1.39e − 4 1.32e − 4 7.20e − 5

POD 1.57e − 4 1.12e − 4 1.12e − 4 6.42e − 5

Modified-POD 1.34e − 4 1.08e − 4 9.94e − 5 6.62e − 5

(Vanilla, POD) 1.69e − 4 1.33e − 4 1.20e − 4 7.76e − 5

(P + 1)-Vanilla 2.08e − 4 2.12e − 4 1.71e − 4 1.48e − 4

Vanilla-PoU 1.91e − 4 2.42e − 4 2.21e − 4 2.37e − 4

POD-PoU 1.63e − 4 1.94e − 4 1.96e − 4 2.30e − 4

Vanilla-POD-PoU 2.00e − 4 2.18e − 4 2.28e − 4 2.41e − 4
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Universal Approximation Theorem - PoU-MoE Trunk

Theorem

Let G : U → V be a continuous operator. Define G† as

G†(u)(y) =

〈
β(u; θb),

P∑
j=1

wj(y)τ j(y; θτ j )

〉
+ b0, where β : RNx ×Θβ → Rp is a branch

network embedding the input function u, τ j : Rdv ×Θτ j → Rp are trunk networks, b0 is a bias,
and wj : Rdv → R are compactly-supported, positive-definite weight functions that satisfy the
partition of unity condition

∑
j wj(y) = 1, j = 1, . . . , P. Then G† can approximate G globally to

any desired accuracy, i.e.,

G(u)(y)− G†(u)(y)∥V ≤ ϵ, (21)

where ϵ > 0 can be made arbitrarily small.
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Universal Approximation Theorem - PoU-MoE Trunk

Proof

∥G(u)(y)− G†(u)(y)∥V =

∥∥∥∥∥G(u)(y)−
〈
β(u; θb),

P∑
j=1

wj(y)τ j(y; θτ j )

〉
− b0

∥∥∥∥∥
V

,

=

∥∥∥∥∥∥∥∥∥∥
(

P∑
j=1

wj(y)

)
︸ ︷︷ ︸

=1

G(u)(y)−

〈
β(u; θb),

P∑
j=1

wj(y)τ j(y; θτ j )

〉

−

(
P∑

j=1

wj(y)

)
︸ ︷︷ ︸

=1

b0

∥∥∥∥∥∥∥∥∥∥
V

,

=

∥∥∥∥∥
P∑

j=1

wj(y)
(
G(u)(y)−

〈
β(u; θb), τ j(y; θτ j )

〉
− b0

)∥∥∥∥∥
V

,

≤
P∑

j=1

wj(y)∥G(u)(y)−
〈
β(u; θb), τ j(y; θτ j )

〉
− b0∥V .
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Universal Approximation Theorem - PoU-MoE Trunk

Given a branch network β that can approximate functionals to arbitrary accuracy, the

(generalized) universal approximation theorem for operators automatically implies that a

trunk network τ j (given sufficient capacity and proper training) can approximate the

restriction of G to the support of wi(y) such that:

∥G(u)(y)−
〈
β(u; θb), τ j(y; θτ j )

〉
− b0∥V ≤ ϵj,

for all y in the support of wj and any ϵj > 0. Setting ϵj = ϵ, j = 1, . . . , P , we obtain:

∥G(u)(y)− G†(u)(y)∥V ≤ ϵ

P∑
j=1

wi(y)︸ ︷︷ ︸
=1

,

=⇒ ∥G(u)(y)− G†(u)(y)∥V ≤ ϵ.

where ϵ > 0 can be made arbitrarily small. This completes the proof.
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Universal Approximation Theorem - Ensemble Trunk

Theorem

Let G : U → V be a continuous operator. Define Ĝ as

Ĝ(u, y) =
〈
τ̂ (y; θτ 1

; θτ 2
; θτ 3

), β̂(u; θb)
〉
+ b0, where β̂ : RNx ×Θβ̂ → Rp1+p2+p3 is a branch

network embedding the input function u, b0 is the bias, and
τ̂ : Rdv ×Θτ̂ 1

×Θτ̂ 2
×Θτ̂ 3

→ Rp1+p2+p3 is an ensemble trunk network. Then Ĝ can
approximate G globally to any desired accuracy, i.e.,

∥G(u)(y)− Ĝ(u)(y)∥V ≤ ϵ, (22)

where ϵ > 0 can be made arbitrarily small.

Proof.

This follows from the (generalized) universal approximation theorem
a
which holds for

arbitrary branches and trunks.

a
Lu, Jin, et al. 2021.
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Ensemble FNO

FNOs consist of a lifting operator, a projection operator, and intermediate Fourier layers

consisting of kernel-based integral operators.

ft denotes the intermediate function at the t th Fourier layer. Then, ft+1 is given by

ft+1(y) = σ

(∫
Ω

K(x, y) ft(x) dx + W ft(y)
)
, x ∈ Ω, (23)

where σ is an activation function, K is a matrix-valued kernel, andW is the pointwise

convolution.

This is a projection of ft(x) onto a set of global Fourier modes.

Incorporating a set of localized basis functions in an ensemble FNO using the PoU-MoE

formulation:

ft+1(y) = σ


∫
Ω

K(x, y)ft(x) dx︸ ︷︷ ︸
Global basis

+
P∑

k=1

wk(y)
∫
Ωk

K(x, y) ft(x)|Ωk
dx︸ ︷︷ ︸

Localized basis

+ Wft(y)

 ,

(24)

The PoU-MoE formulation now combines a set of localized integrals, each of which is a

projection of ft onto a local Fourier basis.
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