Ensemble and Mixture-of-Experts DeepONets for Operator Learning

Ramansh Sharma, Varun Shankar

Kahlert School of Computing The University of Utah

October 2, 2024

SciML - Workshop on Scientific Machine Learning

The Oden Institute for Computational Engineering and Sciences

The University of Texas at Austin

Table of Contents

[Operator Learning](#page-2-0)

[Deep Operator Network \(DeepONet\)](#page-10-0)

Table of Contents

1 [Operator Learning](#page-2-0)

2 [Deep Operator Network \(DeepONet\)](#page-10-0)

 \bullet Let U and V be two separable function spaces.

- \bullet Let U and V be two separable function spaces.
- Data; $\{(u_i, v_i)\}\$, $i = 1, \ldots, N$ where $u_i \in \mathcal{U}$ are the input functions, and $v_i \in \mathcal{V}$ are the output functions.

- Let U and V be two separable function spaces.
- \bullet Data; $\{(u_i, v_i)\}\$, $i = 1, \ldots, N$ where $u_i \in \mathcal{U}$ are the input functions, and $v_i \in \mathcal{V}$ are the output functions.
- \circ $\mathcal{G}: \mathcal{U} \to \mathcal{V}$ is the general (potentially nonlinear) operator we are interested in learning.

- Let U and V be two separable function spaces.
- **•** Data; $\{(u_i, v_i)\}\$, $i = 1, \ldots, N$ where $u_i \in \mathcal{U}$ are the input functions, and $v_i \in \mathcal{V}$ are the output functions.
- $\mathcal{G}: \mathcal{U} \to \mathcal{V}$ is the general (potentially nonlinear) operator we are interested in learning.
- \bullet The approximation $\hat{\mathcal{G}}:\mathcal{U}\times\Theta\to\mathcal{V},$ where the parameters Θ are picked to minimize $||\mathcal{G}-\hat{\mathcal{G}}||$.

Examples:

Examples:

- Derivative: $u(t) \rightarrow u'(t)$
- Laplacian: $u(x, y) \rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
- Integral transform: $u(x, y) \rightarrow \int_{t_1}^{t_2} u(t)K(x, t) dt$

Examples:

- Derivative: $\mathcal{G}: u(t) \to u'(t)$
- Laplacian: $\mathcal{G}: u(x,y) \rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
- Integral transform: \mathcal{G} : $u(x, y) \rightarrow \int_{t_1}^{t_2} u(t)K(x, t) dt$

Table of Contents

1 [Operator Learning](#page-2-0)

² [Deep Operator Network \(DeepONet\)](#page-10-0)

Deep Operator Network (DeepONet)

- DeepONets consist of two neural networks¹,
	- **Branch**: Nonlinear encoding of the input functions; $\boldsymbol{\beta}: \mathbb{R}^{N_x} \to \mathbb{R}^p$.
	- **Trunk**: Nonlinear basis for the output functions; $\boldsymbol{\tau}:\mathbb{R}^{d_{\text{v}}}\rightarrow\mathbb{R}^p$.

¹ (Lu, Jin, et al. [2021\)](#page-74-0)

Deep Operator Network (DeepONet)

- DeepONets consist of two neural networks¹,
	- **Branch**: Nonlinear encoding of the input functions; $\boldsymbol{\beta}: \mathbb{R}^{N_x} \to \mathbb{R}^p$.
	- **Trunk**: Nonlinear basis for the output functions; $\boldsymbol{\tau}:\mathbb{R}^{d_{\text{v}}}\rightarrow\mathbb{R}^p$.
- The DeepONet can be seen as an p-dimensional inner product between the branch and the trunk:

$$
\hat{\mathcal{G}}(u)(y) = \langle \boldsymbol{\tau}(y), \boldsymbol{\beta}(u) \rangle + b_0, \qquad (1)
$$

¹ (Lu, Jin, et al. [2021\)](#page-74-0)

Deep Operator Network (DeepONet)

- DeepONets consist of two neural networks¹,
	- **Branch**: Nonlinear encoding of the input functions; $\boldsymbol{\beta}: \mathbb{R}^{N_x} \to \mathbb{R}^p$.
	- **Trunk**: Nonlinear basis for the output functions; $\boldsymbol{\tau}:\mathbb{R}^{d_{\text{v}}}\rightarrow\mathbb{R}^p$.
- The DeepONet can be seen as an p-dimensional inner product between the branch and the trunk:

$$
\hat{\mathcal{G}}(u)(y) = \langle \boldsymbol{\tau}(y), \boldsymbol{\beta}(u) \rangle + b_0, \qquad (1)
$$

 $\|v_i(\mathbf{y}) - \hat{\mathcal{G}}(u_i)(\mathbf{y})\|_2^2$ is minimized over N training function pairs.

Table of Contents

1 [Operator Learning](#page-2-0)

2 [Deep Operator Network \(DeepONet\)](#page-10-0)

³ [Ensemble DeepONet](#page-14-0)

[Conclusion](#page-64-0)

The PoU-MoE trunk is motivated by the partition-of-unity approximation.

- The PoU-MoE trunk is motivated by the partition-of-unity approximation.
- \bullet We partition the output function domain Ω into P overlapping spherical patches that form a cover of Ω ; Ω_k , $k = 1, \ldots, P$.

- The PoU-MoE trunk is motivated by the partition-of-unity approximation.
- \bullet We partition the output function domain Ω into P overlapping spherical patches that form a cover of Ω ; Ω_k , $k = 1, \ldots, P$.

The key idea is to train a separate trunk network on each patch.

- The key idea is to train a separate trunk network on each patch.
- Then, *blend* them together to produce one global trunk.

- The key idea is to train a separate trunk network on each patch.
- Then, *blend* them together to produce one global trunk.
- The PoU-MoE trunk is written as,

$$
\boldsymbol{\tau}_{\text{PU}}(\boldsymbol{y}) = \sum_{k=1}^{p} w_k(\boldsymbol{y}) \boldsymbol{\tau}_k(\boldsymbol{y}), \qquad (2)
$$

where the weights functions w_k are chosen to be the compactly supported $\mathbb{C}^2\left(\mathbb{R}^3\right)$ Wendland kernel.

• The scaled and shifted Wendland kernel on patch Ω_k is given by,

$$
\psi_k(\gamma, \gamma^c) = \psi_k\left(\frac{\|\gamma - \gamma_k^c\|}{\rho}\right) = \psi_k(r) = (1 - r)_+^4(4r + 1). \tag{3}
$$

• The scaled and shifted Wendland kernel on patch Ω_k is given by,

$$
\psi_k(\gamma, \gamma^c) = \psi_k\left(\frac{\|\gamma - \gamma_k^c\|}{\rho}\right) = \psi_k(r) = (1 - r)_+^4(4r + 1). \tag{4}
$$

• The weight functions are given by,

$$
w_k(y) = \frac{\psi_k(y)}{\sum_j \psi_j(y)}, \ k, j = 1, \ldots, P,
$$
\n(5)

Satisfy $\sum_k w_k(y) = 1$.

• Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.

- Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.
- Properties of $\tau_{\text{p}U}$

- Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.
- Properties of $\tau_{\text{p}U}$
	- Is sparse in its experts τ_k .

- Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.
- Properties of $\tau_{\text{p}U}$
	- Is sparse in its experts τ_k .
	- Constitutes a global set of basis functions.

- **•** Each patch's trunk τ_k can be viewed as a **spatially local "expert"**.
- Properties of $\tau_{\text{p}U}$
	- Is sparse in its experts τ_k .
	- Constitutes a global set of basis functions.
	- Is a universal approximator.

Proper Orthogonal Decomposition (POD) Trunk

The POD trunk 2 uses the output functions' eigenvectors corresponding to the $\it p$ smallest eigenvalues as a set of global basis functions.

$$
\boldsymbol{\tau}_{\text{POD}}(\mathsf{y}) = \begin{bmatrix} \phi_1(\mathsf{y}) & \phi_2(\mathsf{y}) & \dots & \phi_p(\mathsf{y}) \end{bmatrix},\tag{6}
$$

² (Lu, Meng, et al. [2022\)](#page-74-1)

Proper Orthogonal Decomposition (POD) Trunk

The POD trunk 2 uses the output functions' eigenvectors corresponding to the $\it p$ smallest eigenvalues as a set of global basis functions.

$$
\boldsymbol{\tau}_{\text{POD}}(\mathsf{y}) = \begin{bmatrix} \phi_1(\mathsf{y}) & \phi_2(\mathsf{y}) & \dots & \phi_p(\mathsf{y}) \end{bmatrix},\tag{6}
$$

In this work, we use a "**Modified-POD**" trunk that includes the mean function ϕ_0 in the set of basis functions.

$$
\boldsymbol{\tau}_{\text{Modified-POD}}(\boldsymbol{y}) = \begin{bmatrix} \phi_0(\boldsymbol{y}) & \phi_1(\boldsymbol{y}) & \dots & \phi_{p-1}(\boldsymbol{y}) \end{bmatrix},\tag{7}
$$

Goal: Use both local and global basis functions in the DeepONet.

- Goal: Use both local and global basis functions in the DeepONet.
- We propose the ensemble trunk which uses multiple types of basis functions.

- Goal: Use both local and global basis functions in the DeepONet.
- We propose the ensemble trunk which uses multiple types of basis functions.
- **•** Example, given three trunk networks, τ_1 , τ_2 , τ_3 .

- Goal: Use both local and global basis functions in the DeepONet.
- We propose the ensemble trunk which uses multiple types of basis functions.
- **•** Example, given three trunk networks, τ_1 , τ_2 , τ_3 .

$$
\hat{\mathcal{G}}(u, y) = \left\langle \underbrace{[\boldsymbol{\tau}_1(y), \boldsymbol{\tau}_2(y), \boldsymbol{\tau}_3(y)]}_{\text{Ensemble trunk}}, \hat{\boldsymbol{\beta}}(u) \right\rangle + b_0, \tag{8}
$$

- **Goal:** Use both local and global basis functions in the DeepONet.
- We propose the ensemble trunk which uses multiple types of basis functions.
- **Example, given three trunk networks,** τ_1 **,** τ_2 **,** τ_3 **.**

$$
\hat{\mathcal{G}}(u, y) = \left\langle \underbrace{[\tau_1(y), \tau_2(y), \tau_3(y)]}_{\text{Ensemble trunk}}, \hat{\boldsymbol{\beta}}(u) \right\rangle + b_0, \tag{8}
$$

where

 $\boldsymbol{\tau}_1: \mathbb{R}^{d_{\mathsf{v}}}\to\mathbb{R}^{p_1}, \boldsymbol{\tau}_2: \mathbb{R}^{d_{\mathsf{v}}}\to\mathbb{R}^{p_2}, \boldsymbol{\tau}_3: \mathbb{R}^{d_{\mathsf{v}}}\to\mathbb{R}^{p_3}$ $\boldsymbol{\beta}:\mathbb{R}^{\textit{N}_{\text{x}}}\rightarrow\mathbb{R}^{\textit{p}_{1}+\textit{p}_{2}+\textit{p}_{3}}$

- **Goal**: Use both local and global basis functions in the DeepONet.
- We propose the ensemble trunk which uses multiple types of basis functions.
- **Example, given three trunk networks,** τ_1 **,** τ_2 **,** τ_3 **.**

$$
\hat{\mathcal{G}}(u, y) = \left\langle \underbrace{[\tau_1(y), \tau_2(y), \tau_3(y)]}_{\text{Ensemble trunk}}, \hat{\boldsymbol{\beta}}(u) \right\rangle + b_0, \tag{8}
$$

where

- $\boldsymbol{\tau}_1: \mathbb{R}^{d_{\mathsf{v}}}\to\mathbb{R}^{p_1}, \boldsymbol{\tau}_2: \mathbb{R}^{d_{\mathsf{v}}}\to\mathbb{R}^{p_2}, \boldsymbol{\tau}_3: \mathbb{R}^{d_{\mathsf{v}}}\to\mathbb{R}^{p_3}$ $\boldsymbol{\beta}:\mathbb{R}^{\textit{N}_{\text{x}}}\rightarrow\mathbb{R}^{\textit{p}_{1}+\textit{p}_{2}+\textit{p}_{3}}$
- The ensemble trunk is also a universal approximator.
What makes a good ensemble trunk?

• Vanilla-POD: Adding POD modes.

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).
- POD-PoU: Both POD global modes and PoU-MoE local expertise.

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).
- POD-PoU: Both POD global modes and PoU-MoE local expertise.
- Vanilla-POD-PoU: Adding a vanilla trunk (extra trainable parameters) to a POD-PoU ensemble.

- Vanilla-POD: Adding POD modes.
- Vanilla-PoU: Adding spatial locality (PoU-MoE).
- POD-PoU: Both POD global modes and PoU-MoE local expertise.
- Vanilla-POD-PoU: Adding a vanilla trunk (extra trainable parameters) to a POD-PoU ensemble.
- $(1-P+1)$ -Vanilla: Simple overparametrization. We use $P+1$ vanilla trunks in this model, where P is the number of PoU-MoE patches.

POD-PoU Ensemble

Table of Contents

1 [Operator Learning](#page-2-0)

² [Deep Operator Network \(DeepONet\)](#page-10-0)

³ [Ensemble DeepONet](#page-14-0)

2D Darcy Flow

$$
-\nabla \cdot (K(y) \nabla u(y)) = f(y), \ y \in \Omega,
$$

\n
$$
u(y) \sim \mathcal{GP} (0, \mathcal{K}(y_1, y_1')) ,
$$
\n(9)

• $K(y)$ is the permeability field.

2D Darcy Flow

$$
-\nabla \cdot (K(y) \nabla u(y)) = f(y), \ y \in \Omega,
$$

$$
u(y) \sim \mathcal{GP} (0, \mathcal{K}(y_1, y_1')) , \qquad (10)
$$

- $K(y)$ is the permeability field.
- Ω was a triangular domain.
- Goal: learn the solution operator $\mathcal{G} : u(y)|_{\partial\Omega} \to u(y)|_{\Omega}$.

2D Darcy Flow

2D Lid-driven Cavity Flow

$$
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \mathbf{p} + \nu \Delta \mathbf{u}, \ \nabla \cdot \mathbf{u} = 0, \ y \in \Omega, \ t \in \mathcal{T},
$$
\n
$$
\mathbf{u} = \mathbf{u}_b,
$$
\n(12)

2D Lid-driven Cavity Flow

$$
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \mathbf{p} + \nu \Delta \mathbf{u}, \ \nabla \cdot \mathbf{u} = 0, \ y \in \Omega, \ t \in \mathcal{T},
$$
\n(11)\n
\n
$$
\mathbf{u} = \mathbf{u}_b,
$$
\n(12)

 $\Omega = [0, 1]^2$.

• Goal: learn the solution operator $\mathcal{G}: \mathbf{u}_b \to \mathbf{u}$.

2D Lid-driven Cavity Flow

$$
\frac{\partial c}{\partial t} = k_{\text{on}} (R - c) c_{\text{amb}} - k_{\text{off}} c + \nu \Delta c, \ y \in \Omega, \ t \in T,
$$
\n(13)

$$
\nu \frac{\partial c}{\partial n} = 0, \ y \in \partial \Omega,
$$
\n(14)

$$
c(y,0) \sim \mathcal{U}(0,1). \tag{15}
$$

• k_{on} and k_{off} are constants, and $c_{amb}(y, t)$ is a background source of the chemical.

$$
\frac{\partial c}{\partial t} = k_{\text{on}} (R - c) c_{\text{amb}} - k_{\text{off}} c + \nu \Delta c, \ y \in \Omega, \ t \in T,
$$
\n(13)

$$
\nu \frac{\partial c}{\partial n} = 0, \ y \in \partial \Omega,
$$
\n(14)

$$
c(y,0) \sim \mathcal{U}(0,1). \tag{15}
$$

• k_{on} and k_{off} are constants, and $c_{amb}(y, t)$ is a background source of the chemical.

 $\Omega = [0, 2]^2$ and $T = [0, 0.5]$.

$$
\frac{\partial c}{\partial t} = k_{\text{on}} \left(R - c \right) c_{\text{amb}} - k_{\text{off}} \ c + \nu \Delta c, \ \ y \in \Omega, \ t \in \mathcal{T}, \tag{13}
$$

$$
\nu \frac{\partial c}{\partial n} = 0, \ y \in \partial \Omega,\tag{14}
$$

$$
c(y,0) \sim \mathcal{U}(0,1). \tag{15}
$$

- k_{on} and k_{off} are constants, and $c_{amb}(y, t)$ is a background source of the chemical.
- $\Omega = [0, 2]^2$ and $T = [0, 0.5]$.
- \bullet We choose k_{on} and k_{off} to introduce a sharp spatial discontinuity in the solution at $y_1 = 1.$

$$
k_{\text{on}} = \begin{cases} 2, & y_1 \le 1.0, \\ 0, & \text{otherwise} \end{cases}, k_{\text{off}} = \begin{cases} 0.2, & y_1 \le 1.0, \\ 0, & \text{otherwise} \end{cases}
$$
 (16)

• Goal: learn the solution operator $G : c(y, 0) \rightarrow c(y, 0.5)$.

Spatial Locality

- Basis functions corresponding to the largest branch coefficients, i.e., the most "important" basis functions.
- The PoU basis spatially varies significantly more than the vanilla basis.
- The PoU-MoE trunk learns spatially local features, which improves accuracy.

∂c

$$
\frac{\partial c}{\partial t} = k_{\text{on}} (R - c) c_{\text{amb}} - k_{\text{off}} c + \nabla \cdot (K(y) \nabla c), \ y \in \Omega, \ t \in T,
$$
\n(17)
\n
$$
K(y) \frac{\partial c}{\partial n} = 0, y \in \partial \Omega,
$$
\n(18)
\n
$$
c(y, 0) \sim U(0, 1).
$$
\n(19)

$$
\frac{\partial c}{\partial t} = k_{\text{on}} (R - c) c_{\text{amb}} - k_{\text{off}} c + \nabla \cdot (K(y) \nabla c), \ y \in \Omega, \ t \in T,
$$
\n(17)

$$
K(y)\frac{\partial C}{\partial n} = 0, y \in \partial \Omega,
$$
\n(18)

$$
c(y,0) \sim \mathcal{U}(0,1). \tag{19}
$$

• Ω was the unit ball, and $T = [0, 0.5]$.

$$
\frac{\partial c}{\partial t} = k_{\text{on}} (R - c) c_{\text{amb}} - k_{\text{off}} c + \nabla \cdot (K(y) \nabla c), \ y \in \Omega, \ t \in T,
$$
\n(17)

$$
K(y)\frac{\partial C}{\partial n} = 0, y \in \partial \Omega,
$$

\n
$$
c(y, 0) \sim U(0, 1).
$$
\n(18)

- Ω was the unit ball, and $T = [0, 0.5]$.
- Sharp point of discontinuity at $y_1 = 0$.

$$
\frac{\partial c}{\partial t}=k_{\text{on}}\left(R-c\right)c_{\text{amb}}-k_{\text{off}}\ c+\nabla\cdot\left(K(y)\nabla c\right),\ y\in\Omega,\ t\in\mathcal{T},\tag{17}
$$

$$
K(y)\frac{\partial c}{\partial n} = 0, y \in \partial \Omega,
$$
\n(18)

$$
c(y,0) \sim \mathcal{U}(0,1). \tag{19}
$$

• Ω was the unit ball, and $T = [0, 0.5]$.

∂c

- Sharp point of discontinuity at $y_1 = 0$.
- $K(y)$ was chosen to introduce steep gradients in the diffusion term, defined as.

$$
K(y) = B + \frac{C}{\tanh(A)} ((A-3)\tanh(8y_1 - 5) - (A-15)\tanh(8y_1 + 5) + A\tanh(A)),
$$
\n(20)

where $A = 9$, $B = 0.0215$, and $C = 0.005$.

Goal: learn the solution operator $G : c(y, 0) \rightarrow c(y, 0.5)$.

Insights

Insights

Yes/no refers to whether the strategy beats a vanilla-DeepONet, bold refers to the best accuracy.

Insights

Yes/no refers to whether the strategy beats a vanilla-DeepONet, bold refers to the best accuracy.

Answers the question, "What makes a good ensemble trunk?"

Table of Contents

1 [Operator Learning](#page-2-0)

² [Deep Operator Network \(DeepONet\)](#page-10-0)

³ [Ensemble DeepONet](#page-14-0)

The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.

- The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.
- The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems (2-4x accuracy improvement).

- The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.
- The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems (2-4x accuracy improvement).
- Simple overparametrization $((P + 1)$ -Vanilla DeepONet) is not enough and sometimes deteriorates accuracy; a judicial combination of localized and global basis functions is vital.

- The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.
- The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems (2-4x accuracy improvement).
- Simple overparametrization ($(P + 1)$ -Vanilla DeepONet) is not enough and sometimes deteriorates accuracy; a judicial combination of localized and global basis functions is vital.
- The novel PoU-MoE trunk captures spatially local features.

- The ensemble DeepONet, a method of enriching the basis functions of the DeepONet.
- The POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems (2-4x accuracy improvement).
- Simple overparametrization ($(P + 1)$ -Vanilla DeepONet) is not enough and sometimes deteriorates accuracy; a judicial combination of localized and global basis functions is vital.
- The novel PoU-MoE trunk captures spatially local features.
- The PoU-MoE trunk brings expressivity in problems with steep gradients in either the input or output functions.

Future work

Future work

Extend PoU-MoE to adaptive partitioning strategies (trainable patch centers and patch radii, trainable patch shape).
Future work

- Extend PoU-MoE to adaptive partitioning strategies (trainable patch centers and patch radii, trainable patch shape).
- Ensemble learning for other neural operators (FNO, GNO, etc.).

Thank you

Ramansh Sharma and Varun Shankar. "Ensemble and Mixture-of-Experts DeepONets for Operator Learning". [https://arxiv.org/abs/2405.11907.](https://arxiv.org/abs/2405.11907) 2024.

Bibliography

- Lu, Lu, Pengzhan Jin, et al. (Mar. 2021). "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators". en. In: Nature Machine Intelligence 3.3. Publisher: Nature Publishing Group, pp. 218–229. issn: 2522-5839. doi: [10.1038/s42256-021-00302-5](https://doi.org/10.1038/s42256-021-00302-5).
- Lu, Lu, Xuhui Meng, et al. (Apr. 2022). "A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data". In: Computer Methods in Applied Mechanics and Engineering 393, p. 114778. ISSN: 0045-7825. DOI: [10.1016/j.cma.2022.114778](https://doi.org/10.1016/j.cma.2022.114778).

Error calculations

- For all experiments, we first computed the relative l_2 error for each test function, $e_{\ell_2}=\frac{\|\tilde{u}-u\|_2}{\|u\|_2}$ where <u>u</u> was the true solution vector and \tilde{u} was the DeepONet prediction vector; we then computed the mean over those relative ℓ_2 errors.
- We also report a squared error (MSE) between the DeepONet prediction and the true solution averaged over *N* functions $e_{\text{mse}}(y) = \frac{1}{N} (\tilde{u}(y) - u(y))^2$.

Other results

Relative l_2 errors (as percentage) on the test dataset for the 2D Darcy flow, cavity flow, and reaction-diffusion problems, and the 3D reaction-diffusion problem. RD stands for reaction-diffusion.

Runtime results

Table: Average time per training epoch in seconds. RD stands for reaction-diffusion.

Runtime results

Table: Inference time on the test dataset in seconds. RD stands for reaction-diffusion.

Universal Approximation Theorem - PoU-MoE Trunk

Theorem

Let
$$
G : U \to V
$$
 be a continuous operator. Define G^{\dagger} as
\n $G^{\dagger}(u)(y) = \left\langle \beta(u; \theta_b), \sum_{j=1}^{p} w_j(y) \tau_j(y; \theta_{\tau_j}) \right\rangle + b_0$, where $\beta : \mathbb{R}^{N_x} \times \Theta_{\beta} \to \mathbb{R}^p$ is a branch
\nnetwork embedding the input function $u, \tau_j : \mathbb{R}^{d_v} \times \Theta_{\tau_j} \to \mathbb{R}^p$ are trunk networks, b_0 is a bias,
\nand $w_j : \mathbb{R}^{d_v} \to \mathbb{R}$ are compactly-supported, positive-definite weight functions that satisfy the
\npartition of unity condition $\sum_j w_j(y) = 1, j = 1, ..., P$. Then G^{\dagger} can approximate G globally to
\nany desired accuracy, i.e.,

$$
\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y) \| y \le \epsilon, \tag{21}
$$

where $\epsilon > 0$ can be made arbitrarily small.

Universal Approximation Theorem - PoU-MoE Trunk

Proof

$$
\|\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y)\|_{\mathcal{V}} = \left\|\mathcal{G}(u)(y) - \left\langle \beta(u;\theta_{b}), \sum_{j=1}^{p} w_{j}(y)\tau_{j}(y;\theta_{\tau_{j}}) \right\rangle - b_{0} \right\|_{\mathcal{V}},
$$

\n
$$
= \left\|\left(\sum_{j=1}^{p} w_{j}(y)\right) \mathcal{G}(u)(y) - \left\langle \beta(u;\theta_{b}), \sum_{j=1}^{p} w_{j}(y)\tau_{j}(y;\theta_{\tau_{j}}) \right\rangle - \left(\sum_{j=1}^{p} w_{j}(y)\right) b_{0} \right\|_{\mathcal{V}},
$$

\n
$$
= \left\|\sum_{j=1}^{p} w_{j}(y) (G(u)(y) - \langle \beta(u;\theta_{b}), \tau_{j}(y;\theta_{\tau_{j}}) \rangle - b_{0}) \right\|_{\mathcal{V}},
$$

\n
$$
\leq \sum_{j=1}^{p} w_{j}(y) \|\mathcal{G}(u)(y) - \langle \beta(u;\theta_{b}), \tau_{j}(y;\theta_{\tau_{j}}) \rangle - b_{0} \|\mathcal{V}.
$$

Universal Approximation Theorem - PoU-MoE Trunk

Given a branch network β that can approximate functionals to arbitrary accuracy, the (generalized) universal approximation theorem for operators automatically implies that a trunk network τ_i (given sufficient capacity and proper training) can approximate the restriction of G to the support of $w_i(\mathbf{v})$ such that:

$$
\|\mathcal{G}(u)(y) - \langle \boldsymbol{\beta}(u; \theta_b), \boldsymbol{\tau}_j(y; \theta_{\boldsymbol{\tau}_j}) \rangle - b_0\|_{\mathcal{V}} \leq \epsilon_j,
$$

for all y in the support of w_i and any $\epsilon_i > 0$. Setting $\epsilon_i = \epsilon$, $j = 1, \ldots, P$, we obtain:

$$
\|\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y)\|_{\mathcal{V}} \leq \epsilon \sum_{j=1}^{p} w_{j}(y),
$$

$$
\implies \|\mathcal{G}(u)(y) - \mathcal{G}^{\dagger}(u)(y)\|_{\mathcal{V}} \leq \epsilon.
$$

where $\epsilon > 0$ can be made arbitrarily small. This completes the proof.

Universal Approximation Theorem - Ensemble Trunk

Theorem

Let $\mathcal{G}: \mathcal{U} \to \mathcal{V}$ be a continuous operator. Define $\hat{\mathcal{G}}$ as $\hat{\mathcal{G}}(u, y) = \left\langle \hat{\boldsymbol{\tau}}(y; \theta_{\boldsymbol{\tau}_1}; \theta_{\boldsymbol{\tau}_2}; \theta_{\boldsymbol{\tau}_3}), \hat{\boldsymbol{\beta}}(u; \theta_b) \right\rangle + b_0$, where $\hat{\boldsymbol{\beta}}: \mathbb{R}^{\mathsf{N}_{\mathsf{x}}}\times\Theta_{\hat{\boldsymbol{\beta}}} \to \mathbb{R}^{p_1+p_2+p_3}$ is a branch network embedding the input function u , b_0 is the bias, and $\hat{\bm{\tau}}: \mathbb{R}^{d_\mathsf{v}}\times\Theta_{\hat{\bm{\tau}}_1}\times\Theta_{\hat{\bm{\tau}}_2}\times\Theta_{\hat{\bm{\tau}}_3}\to \mathbb{R}^{p_1+p_2+p_3}$ is an ensemble trunk network. Then $\hat{\mathcal{G}}$ can approximate G globally to any desired accuracy, i.e.,

$$
\|\mathcal{G}(u)(y) - \hat{\mathcal{G}}(u)(y)\|_{\mathcal{V}} \leq \epsilon, \tag{22}
$$

where $\epsilon > 0$ can be made arbitrarily small.

Proof.

This follows from the (generalized) universal approximation theorem^{a} which holds for arbitrary branches and trunks.

 a Lu, Jin, et al. [2021.](#page-74-0)

Ensemble FNO

- FNOs consist of a *lifting* operator, a *projection* operator, and intermediate Fourier layers consisting of kernel-based integral operators.
- f_t denotes the intermediate function at the $t^{\textit{th}}$ Fourier layer. Then, f_{t+1} is given by

$$
f_{t+1}(y) = \sigma\left(\int_{\Omega} \mathcal{K}(x, y) f_t(x) dx + W f_t(y)\right), x \in \Omega,
$$
 (23)

where σ is an activation function, K is a matrix-valued kernel, and W is the pointwise convolution.

- This is a projection of $f_t(x)$ onto a set of global Fourier modes.
- Incorporating a set of localized basis functions in an ensemble FNO using the PoU-MoE formulation:

$$
f_{t+1}(y) = \sigma \left(\underbrace{\int_{\Omega} \mathcal{K}(x, y) f_t(x) dx}_{\text{Global basis}} + \underbrace{\sum_{k=1}^p w_k(y) \int_{\Omega_k} \mathcal{K}(x, y) f_t(x) \big|_{\Omega_k} dx}_{\text{Localized basis}} + W f_t(y) \right),
$$
\n(24)

• The PoU-MoE formulation now combines a set of localized integrals, each of which is a projection of f_t onto a local Fourier basis.