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Abstract
Physics-informed neural networks (PINNs) are neural networks trained by using
physical laws in the form of partial differential equations (PDEs) as soft constraints.
We present a new technique for the accelerated training of PINNs that combines
modern scientific computing techniques with machine learning: discretely-trained
PINNs (DT-PINNs). The repeated computation of the partial derivative terms in
the PINN loss functions via automatic differentiation during training is known to
be computationally expensive, especially for higher-order derivatives. DT-PINNs
are trained by replacing these exact spatial derivatives with high-order accurate
numerical discretizations computed using meshless radial basis function-finite
differences (RBF-FD) and applied via sparse-matrix vector multiplication. While
in principle any high-order discretization may be used, the use of RBF-FD allows
for DT-PINNs to be trained even on point cloud samples placed on irregular
domain geometries. Additionally, though traditional PINNs (vanilla-PINNs) are
typically stored and trained in 32-bit floating-point (fp32) on the GPU, we show
that for DT-PINNs, using fp64 on the GPU leads to significantly faster training
times than fp32 vanilla-PINNs with comparable accuracy. We demonstrate the
efficiency and accuracy of DT-PINNs via a series of experiments. First, we explore
the effect of network depth on both numerical and automatic differentiation of a
neural network with random weights and show that RBF-FD approximations of
third-order accuracy and above are more efficient while being sufficiently accurate.
We then compare the DT-PINNs to vanilla-PINNs on both linear and nonlinear
Poisson equations and show that DT-PINNs achieve similar losses with 2-4x faster
training times on a consumer GPU. Finally, we also demonstrate that similar
results can be obtained for the PINN solution to the heat equation (a space-time
problem) by discretizing the spatial derivatives using RBF-FD and using automatic
differentiation for the temporal derivative. Our results show that fp64 DT-PINNs
offer a superior cost-accuracy profile to fp32 vanilla-PINNs, opening the door to a
new paradigm of leveraging scientific computing techniques to support machine
learning.

1 Introduction
Partial differential equations (PDEs) provide a convenient framework to model a large number of
phenomena across science and engineering. In real-world scenarios, PDEs are typically challenging
or impossible to solve using analytical techniques, and must instead be approximately solved using a
numerical method. A variety of numerical methods to solve these PDEs have been developed including
but not limited to finite difference (FD) methods (19) (which work primarily on rectangular domains
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partitioned into Cartesian grids) and finite element (FE) methods (36) (which work on domains with
curved boundaries but require partitioning the domain into multidimensional simplices). A modern
class of numerical methods called meshless or meshfree methods generalizes finite difference methods
in such a way as to remove the dependence on Cartesian grids, thereby allowing for the numerical
solution of PDEs on point clouds. Of these, radial basis function-finite differences (RBF-FD) are
among the most popular and widely-used (3; 5; 37; 8; 9; 1; 11; 12; 13; 10; 25; 26; 14; 33; 18), though
a host of other such methods also exist. Much like FD or FE methods, these meshless methods can
also approximate solutions to a desired order of accuracy.

More recently, PDE solvers based on machine learning (ML) have begun to gain in popularity due to
the inherent ability of ML techniques such as neural networks (NNs) to recover highly complicated
functions from data specified at arbitrary locations (15; 20). We focus on a popular class of ML-based
meshless methods called physics-informed neural networks (PINNs) (27). PINNs can be used both
to discover/infer PDEs that govern a given data set, and as direct PDE solvers. Our focus in this
work is on the latter problem, though our techniques extend straightforwardly to inferring PDEs as
well. PINNs are typically multilayer feedforward deep NNs (DNNs) that are trained using PDEs
and boundary conditions as soft constraints, leveraging automatic differentiation (autograd) for
computing derivatives appearing in the PDE terms. The original PINNs, often referred to as vanilla-
PINNs, are challenging to train, at least partly because PDE-based constraints lead to complicated
loss landscapes (17). These issues are somewhat ameliorated by using domain decomposition (X-
PINNs) (16) or gradient-enhanced training (G-PINNs) (38). Other approaches for ameliorating these
issues involve curriculum training or sequence-to-sequence learning (17). Many of these extensions
can also help improve training and test accuracy. Much like other DNNs, PINNs are typically trained
in 32-bit floating-point (i.e., fp32 or single precision).

In this work, we introduce a new technique for accelerating the training of vanilla-PINNs. Our
technique relies on two key features: (a) using RBF-FD to compute highly accurate (nevertheless
approximate) spatial derivatives in place of autograd, and (b) training the DNN in fp64 rather than
fp32. These new discretely-trained PINNs (DT-PINNs) can be trained significantly faster than fp32
vanilla-PINNs on consumer desktop GPUs with no loss in accuracy or change in DNN architecture.
The use of RBF-FD allows DT-PINNs to retain the meshless nature of vanilla-PINNs, thereby
allowing for the solution of PDEs on domains with curved boundaries. As RBF-FD uses sparse-
matrix vector multiplication (SpMV) to approximate the derivatives, DT-PINNs are also parallelizable
on modern GPU architectures. It is important to note that DT-PINNs use autograd for the actual
optimization of the PINN weights; only PDE derivatives are discretized using RBF-FD.

The NN literature does contain efforts to replace automatic differentiation with numerical differentia-
tion. For instance, recent work showed that FD approximations can be efficient for learning generative
models via score matching (23). Another example is an NN architecture that involves learning FD-like
filters for faster prediction of PDEs (35). In the PINN literature, fractional-PINNs (F-PINNs) use
numerical differentiation as autograd cannot compute fractional derivatives (22). Neverthless, to the
best of our knowledge, ours is the first work on using meshless high-order accurate FD-like methods
in conjunction with PINNs, allowing them to be trained without any loss in accuracy on domains
with curved boundaries (just as autograd does). An alternative would involve eliminating autograd
inefficiencies via Taylor-mode differentiation (4). However, we show that at least part of the speedups
observed in DT-PINNs is because numerical differentiation results in training completing in fewer
epochs than if autograd were to be used.

To alleviate concerns about replacing autograd with RBF-FD, we first compare fp64 RBF-FD
approximation of different orders of accuracy against fp32 autograd for DNNs and show the cost
benefits of using higher-order accurate RBF-FD. Then, to illustrate the features of DT-PINNs, we
focus for brevity on two purely spatial PDEs (the nonlinear and linear Poisson equations) and one
space-time PDE (the heat equation). We use these settings to compare DT-PINNs and vanilla-PINNs
for relative errors, timings, and speedups on a simple desktop GPU. We demonstrate through our
experiments that DT-PINNs offer a superior cost-accuracy profile over vanilla-PINNs.

The remainder of this paper is organized as follows. In Section 2, we review both vanilla-PINNs and
RBF-FD. Next, in Section 3, we discuss how to train DT-PINNs to solve both the Poisson and heat
equations. Then, in Section 4, we present experimental results comparing RBF-FD and autograd,
and comparing DT-PINNs against vanilla-PINN on the Poisson and heat equations. We summarize
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our results and discuss possible future work in Section 5. Finally, the appendix contains additional
results, code snippets, and key implementation details.

Notation: We use x to refer to spatial coordinates in d dimensions. On the other hand, a bolded
quantity such as c or u indicates a vector with more than d elements (an array). Finally, the∼ symbol
on top of a quantity indicates that the quantity is an approximation.

2 Review
We now provide a brief mathematical review of both vanilla-PINNs and RBF-FD discretizations.
Unless we note otherwise, all derivatives in this section are spatial or temporal. We focus on three
prototypical PDEs: the nonlinear Poisson equation, the linear Poisson equation, and the heat equation.

2.1 Physics-informed neural networks
Let Ω ⊂ Rd be a domain with boundary given by ∂Ω; here, d is the spatial dimension. We will focus
on the solution of the nonlinear Poisson equation on Ω using PINNs. Let x ∈ Rd, and let u : Rd → R
be the solution to

∆u(x) = eu(x) + f(x), x ∈ Ω, (1)
(αn(x) · ∇+ β)u(x) = g(x), x ∈ ∂Ω, (2)

where ∆ is the Laplacian in Rd,∇ is the Rd gradient, n(x) is the unit outward normal vector on the
boundary ∂Ω, f(x) and g(x) are known functions, and α, β ∈ R are known coefficients. If the eu(x)

term is dropped from (1), we obtain the simpler linear Poisson equation:

∆u(x) = f(x), x ∈ Ω. (3)

The vanilla-PINN technique for solving either Poisson problem involves approximating the unknown
solution u(x) by a DNN ũ(x,w) (where w is a vector of unknown NN weights), so that ‖ũ(x,w)−
u(x)‖ ≤ ε for some norm ‖.‖ and some tolerance ε. In the absence of existing solution data, this
is accomplished by enforcing (1) and (2) as soft constraints on ũ(x) to find the weights w during
training. Denote by X = {xk}Nk=1 the set of training points at which these constraints are enforced;
in the context of PDEs, these are also called collocation points. For convenience, we divide X into
two sets: Ni interior points in the set Xi and Nb boundary points in the set Xb; then, X = Xi ∪Xb,
and N = Ni +Nb. Further, let B = αn(x) · ∇+ β. The vanilla-PINN training loss e(x,w) can then
be written as:

e(x,w) =
1

Ni

Ni∑
j=1

(
∆ũ(x,w)|x=xj

− eũ(xj) − f(xj)
)2

︸ ︷︷ ︸
PDE loss in interior

+
1

Nb

Nb∑
i=1

(
Bũ(x,w)|x=xi

− g(xi)
)2

︸ ︷︷ ︸
Boundary condition loss on boundary

, (4)

where ∆ and the ∇ term in B are both applied through autograd. The tanh activation function is
typically used, L-BFGS is used as the optimizer for finding the weights w, and training is typically
done in fp32 (17). For the linear Poisson equation, one simply omits the eũ term from the loss above.

For time-dependent PDEs, the PINN becomes a function of space and time ũ(x, t). We focus on the
forced heat equation, given by

∂u(x, t)

∂t
= ∆u(x, t) + f(x, t), x ∈ Ω, (5)

Bu(x, t) = g(x, t), x ∈ ∂Ω, (6)
u(x, 0) = u0(x), (7)

where (7) is an initial condition and u0(x) is some known function. While the ∆ term is handled
via autograd, there are two options to handle temporal derivatives: in a continuous fashion or
a time-discrete fashion. In the former, one samples the full space-time interval Ω × [0, T ] with
collocation/training points, and then uses autograd to compute all spatial and temporal derivatives.
The loss terms are also augmented with the initial condition (7), which is enforced on the full space-
time solution. In the time-discrete approach, one typically discretizes the time derivative using an
appropriate scheme (such as a Runge-Kutta method), and then proceeds in a step by step fashion. We
focus on the continuous approach in this work.
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2.2 Radial basis function-finite differences (RBF-FD)
We now briefly review RBF-FD methods. Given some function f : Rd → R, the goal of any FD
formula is to approximate the action of a linear operator L on that function (i.e., to approximate Lf )
at some location x1. This is typically accomplished by using a weighted linear combination of f at
x1 and its n− 1 nearest neighbors. Mathematically, this can be written as:

Lf(x)|x=x1
≈

n∑
k=1

ckf(xk), (8)

where the real numbers ck are called FD weights, and the set of points x1, . . . , xn is called an FD
stencil. In general, given a set of samples X = {xj}Nj=1, one can repeat the above procedure to find
FD weights at every single point. These weights can be assembled into an N ×N differentiation
matrix L so that Lf(x)|X ≈ L f(x)|X . If n << N , L will be a sparse matrix with at most n
non-zero elements per row. If X lies on a Cartesian grid, the entries of L (i.e., the FD weights ck)
are known in advance. However, if X is a more general point cloud, standard FD cannot be used to
generate the entries of L (see Mairhuber-Curtis theorem (7)). The RBF-FD method involves using an
interpolatory combination of RBFs and polynomials instead. Without loss of generality, we describe
the RBF-FD procedure for x1 and its n− 1 nearest neighbors. Let φ(r) = rm, where m is odd, be
a radial kernel (a polyharmonic spline), and qj(x), j = 1, . . . ,

(
`+d
d

)
be a basis for polynomials of

total degree ` in d dimensions; we use tensor-product Legendre polynomials. The RBF-FD weights
for the operator L at the point x1 are computed by solving the following dense (block) linear system
on this stencil: [

A P
PT 0

] [
c
λ

]
=

[
La
Lq

]
, (9)

where

Aij = φ (‖xi − xj‖) , i, j = 1, . . . , n, Pij = qj(xi), i = 1, . . . , n, j = 1, . . . ,

(
`+ d

d

)
, (10)

La = Lφ (‖x− xj‖)|x=x1
, Lq = Lqj(x)|x=x1

, j = 1, . . . ,

(
`+ d

d

)
, (11)

where c is the (column) vector of n RBF-FD weights. The vector λ is a set of Lagrange multipliers
enforcing the condition PT c = Lq, thereby ensuring that (a) the RBF-FD weights c can exactly
differentiate all polynomials up to total degree `; and that (b) the error in the RBF-FD approximation
to L when applied to all other functions is O(h`+1−θ), where 0 ≤ h ≤ 1 is a measure of sample
spacing in the stencil, and θ is the number of derivatives in the differential operator L (6). We set
` = p+ θ − 1 based on the desired order of convergence p so that the error is O(hp). We then set
the stencil size to n = 2

(
`+d
d

)
+ 1 as this ensures that (9) has a solution (2), and also set m = `

if ` is odd, and m = ` − 1 if ` is even (29). L becomes more dense for higher values of p and
dimension d, as n = O(pd). When this procedure is repeated for each point in the set X , the cost
scales as O(N) for fixed n, with large speedups possible by computing multiple sets of weights
using each stencil (28; 29; 31; 34; 32). For domains with fixed boundaries, the RBF-FD weights can
be precomputed and reused during simulation. However, domains with moving boundaries require
recomputation of RBF-FD weights proximal to the boundary every time-step; fortunately, this can be
done quite efficiently (32).

Ghost points When tackling boundary conditions involving derivatives (such as in (2)) using RBF-
FD, it is common to include a set of Nb ghost points outside the domain boundary ∂Ω into the set of
samples to ensure that RBF-FD stencils at the boundary are less one-sided; this aids in numerical
stability and accuracy. Ghost points allow us to also enforce the PDE at both the interior and boundary
points. We therefore define and use the extended set X̃ = Xi ∪Xb ∪Xg, where Xg is the set of
ghost points. For the remainder of this article, let the RBF-FD differentiation matrix for ∆ be L
(dimensions (Ni +Nb)× (Ni + 2Nb)), and for B be B (dimensions Nb × (Ni + 2Nb)).

3 Discretely-Trained PINNs (DT-PINNs)
Having described both vanilla-PINNs and RBF-FD, we are now ready to describe DT-PINNs. In
short, DT-PINNs are PINNs that are trained using the sparse differentiation matrices L and B in
place of the autograd operations used to compute the Laplacian and boundary operators in the loss
function (4) (and its heat equation equivalent). All operations are carried out in fp64.
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Poisson Equation Focusing first on the nonlinear Poisson equation (1), recall that ũ(x,w) is the
PINN approximation to the true solution u(x). Let the evaluation of ũ(x,w) on the set X̃ be ũ, i.e.,
ũ is obtained by evaluating ũ(x,w) at interior, boundary, and ghost points. Further define the vector
e, which is the loss function evaluated at only the interior and boundary points, i.e., e = e(x,w)|X .
Then, the DT-PINN loss function can be written as:

e =
1

Ni +Nb
‖Lũ− exp(ũ)− f‖22︸ ︷︷ ︸

PDE loss in interior and on boundary

+
1

Nb
‖Bũ− g‖22︸ ︷︷ ︸

Boundary condition loss on boundary

, (12)

where L and B were defined previously, exp(ũ) is the element-wise exponential of the vector ũ, and
f = f(x)|X , and g = g(x)|Xb

; here, f has dimension (Ni +Nb)× 1, and g has dimension Nb × 1.
For efficiency, L and B can be precomputed using RBF-FD before the training process begins, and
then simply multiplied with the vector ũ to obtain its numerical derivatives. The loss function (12)
is then minimized over w as usual using autograd in conjunction with a suitable optimizer. For the
linear Poisson equation (3), we simply drop the exp(ũ) term.

Heat Equation When using DT-PINNs for the heat equation, we demonstrate the flexibility of our
method by using a mixed training technique where the time derivative is handled with autograd
and the spatial derivatives are discretized with RBF-FD; this also allows us to bypass the Courant-
Friedrichs-Lewy (CFL) constraint on the time-step. We carefully order the evaluations of the network
so that L and B multiply the right quantities. Let ũ(x, t,w) be the PINN, and recall that we have
Nt time steps over the interval [0, T ]; in addition, we also have the initial condition at time t = 0,
making for a total of Nt + 1 steps. Define ũk = ũ|x=X̃,t=k4t, where4t is the timestep. This vector
is the evaluation of ũ on all spatial locations (including ghost nodes) for the k-th time slice. This
definition in turn allows us to define two vectors, ũ∆ and ũB as follows:

ũ∆ =


Lũ0

Lũ1

...
LũNt

 , ũB =


Bũ0

Bũ1

...
BũNt

 . (13)

The vector ũ∆ has dimensions (Nt + 1)(Ni +Nb)× 1, and ũB has dimensions NtNb × 1. Next,
we define the data vectors f and g as follows:

f =


f0
f1
...

fNt

 , g =


g0

g1

...
gNt

 , (14)

where fk = f(x, t)|x=X,t=k4t, and gk = g(x, t)|x=Xb,t=k4t. Finally, we define two more vectors:
u0 = u0(x)|X , the vector evaluating the initial condition on the set X (interior and boundary points);
and ũt, the vector of evaluations of ∂ũ∂t at spatial locations (interior and boundary) for each time slice:

ũt =


(
∂ũ
∂t

)
0(

∂ũ
∂t

)
1

...(
∂ũ
∂t

)
Nt

 , (15)

where
(
∂ũ
∂t

)
k

= ∂ũ
∂t

∣∣
x=X,t=k4t. This vector is computed using autograd. With these different

vectors defined, we can finally write the DT-PINN loss vector e for the heat equation as

e =
1

Ni +Nb
‖u0 − ũ|x=X,t=0 ‖

2
2︸ ︷︷ ︸

Initial condition

+
1

(Nt + 1)(Ni +Nb)
‖ũt − ũ∆ − f‖22︸ ︷︷ ︸

PDE loss in interior and on boundary

+
1

(Nt + 1)Nb
‖ũB − g‖22︸ ︷︷ ︸

Boundary condition loss on boundary

.

(16)

4 Results
We now present experimental results comparing DT-PINN and vanilla-PINN performance on the
linear Poisson equation (3), the nonlinear Poisson equation (1), and the forced heat equation (5).
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Setup All experiments were run for 5000 epochs on an NVIDIA GeForce RTX 2070. All results
are reproducible with the seeds we used in the experiments. We used the L-BFGS optimizer with
manually fine-tuned learning rates for both vanilla-PINNs and DT-PINNs. Both DT-PINNs and
vanilla-PINNs used a constant NN depth of s = 4 layers with 50 nodes each across all runs. We use
quasi-uniform collocation points generated using a node generator (30). For the Poisson experiments,
we report errors on a test set ofNtest = 21748 points. For the heat equation, we report results directly
at the collocation points for convenience. For all experiments, the spatial domain Ω is set to the unit
disk

Ω = {x ∈ Rd | ‖x‖22 ≤ 1}. (17)

In the 2D heat equation experiment, the space-time domain is chosen to be Ω × [0, 1]. The time
interval [0, 1] is evenly divided into 24 time steps so that Nt = 24 (excluding t = 0), and the
time-step was set to4t = 1

24 . We measure all errors against a manufactured (specified) solution u,
and specify f so that the solution holds true. The boundary condition term g is computed by applying
the operator B to u; we use α = β = 1 for all tests. To compare DT-PINNs and vanilla-PINNs to the
manufactured solutions u, we report the relative `2 error

e`2 =
‖ũ− u‖2
‖u‖2

, (18)

where u is the true solution vector, and ũ is either the DT-PINN or vanilla-PINN solution vector.

4.1 Effect of neural network depth

(a) (b)

Figure 1: Autograd properties as a function of network depth s. The figure shows (a) effect of neural
network depth s on the relative error (with respect to fp64 autograd) and (b) time taken for one
application of autograd on fp32 and fp64, compared to the time taken for SpMV using RBF-FD. The
RBF-FD weights for N = 19638 collocation points were precomputed using an efficient CPU code
in approximately 0.1s. Error bars over 15 random runs are shown.

We first study the effect of PINN depth (fixing the number of nodes per layer) s on computing the
Laplacian ∆ of the output with respect to the spatial variable x using either autograd or RBF-FD. We
compute errors against fp64 autograd for fp32 autograd and for RBF-FD with p = 2, 3, 4, and 5. All
errors were computed on N = 19638 quasi-uniform collocation points. The results are in shown in
Figure 1a. We see fp32 autograd is the most accurate, and that increasing p increases the accuracy of
RBF-FD by about two orders of magnitude. Only the p = 5 case appears to match fp32 autograd in
accuracy, but errors are reasonably low for p = 3 and p = 4 also. In Figure 1b, we report the time
taken for the same test. It is immediately clear that fp64 autograd is significantly more expensive
than the fp32 variant, though both costs scale slowly with the network depth s. More importantly, the
time taken for fp64 RBF-FD (for all orders) is both lower than both fp32 and fp64 autograd and is
independent of the network depth s, primarily since the RBF-FD weights can be precomputed and
repeatedly reused during training.
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(a) (b) (c)

Figure 2: fp64 DT-PINNs and fp32 vanilla-PINN results on the linear Poisson equation (3) for
different numbers of collocation points (N ) and orders of accuracy (p). We show (a) the relative error
in the PINN solution; (b) the time taken to converge to lowest relative error; and (c) the speedup
attained by fp64 DT-PINNs relative to fp32 vanilla-PINN for those times. Error bars over 5 random
runs are shown.

4.2 Linear Poisson equation

Next, we study the performance of fp64 DT-PINNs and fp32 vanilla-PINNs on the linear Poisson
equation (3) on the domain (17). Letting x = [x1, x2], we specify the true solution u to be

u(x) = u(x1, x2) = 1 + sin(πx1) cos(πx2), (19)

and enforce this by setting f = ∆u. We then solve for ũ as described in Section 3. The results of this
experiment are shown in Figure 2. We present relative errors (Figure 2a), wall clock time (Figure
2b), and speedup (Figure 2c). We also present results for fp64 vanilla PINNs. It is important to
note that fp64 DT-PINNs were completely stored and trained in fp64, a format widely known to be
significantly slower on the GPU than fp32.

Figure 2a shows the relative errors for DT-PINNs as a function of the number of collocation points
N . DT-PINNs for p = 3, 4, 5 produce similar relative errors to both fp32 and fp64 vanilla-PINNs
for the same value of N . In contrast, the DT-PINN using p = 2 is generally less accurate, showing
that higher-order accuracy is needed to reach the same relative errors as vanilla-PINNs. Examining
Figures 2b and 2c, we also see that all fp64 DT-PINNs can be trained much more rapidly than both
fp32 and fp64 vanilla-PINNs. In fact, Figure 2c shows a maximum training speedup of 4x for
DT-PINNs even if p = 2 is ignored. In general, fp64 DT-PINNs for p > 2 are trained much
more quickly than vanilla-PINNs without a significant loss in accuracy. We also note that using
fp32 DT-PINNs did not lead to greater speedups over the fp64 DT-PINNs, with a loss in accuracy.
These results are shown in Appendix A.1.2. The superior performance of fp64 DT-PINNs becomes
clearer when we examine the number of training epochs as a function of the number of collocation
points N (Figure 3). Figures 3a and 3b both illustrate that both fp32 and fp64 DT-PINNs reach
their lowest relative errors in fewer epochs than vanilla-PINNs. These results provide evidence that
DT-PINNs have simpler loss function landscapes than their vanilla-PINN counterparts, also implying
that loss functions involving linear combinations of NN values are easier to minimize than loss
functions involving derivatives of NNs. Figure 3b also shows that only fp64 DT-PINNs take fewer
epochs to train as N is increased. We also see that moving to fp64 does not appear to significantly
speed up vanilla-PINNs. It is therefore the combination of discrete training and fp64 that results in
speedups for increasing N .1

7



(a) (b)

Figure 3: Number of training epochs to achieve the lowest relative error as a function of number of
collocation points N and order p for (a) fp32 DT-PINNs and (b) fp64 DT-PINNs. Error bars over 5
random runs are shown.

(a) (b) (c)

Figure 4: fp64 DT-PINNs and fp32 vanilla-PINN results on the nonlinear Poisson equation (1) for
different numbers of collocation points (N ) and orders of accuracy (p). We show (a) the relative error
in the PINN solution; (b) the time taken to converge to lowest relative error; and (c) the speedup
attained by fp64 DT-PINNs relative to fp32 vanilla-PINN for those times. Error bars over 5 random
runs are shown.

4.3 Nonlinear Poisson equation
Next, to understand the influence of nonlinearities in terms not including the differential operator,
we test the performance of DT-PINNs on the nonlinear Poisson equation (1). To measure errors,
we use the manufactured solution given by (19), and set f = ∆u − eu. The results are shown in
Figure 4; for simplicity, we omit p = 2 and fp64 vanilla-PINNs as both these have poor cost-accuracy
tradeoffs. First, Figure 4a shows that despite some outliers, fp64 DT-PINNs achieve comparable
relative errors to fp32 vanilla-PINNs. Further, Figure 4b shows that DT-PINNs are still trained faster
than vanilla-PINNs. However, when comparing Figure 4c to Figure 2c (linear Poisson equation),
we see that the average speedup is higher for the linear Poisson equation. This highlights one

1We also attempted to train fp32 vanilla-PINNs using ghost points, but using ghost points offered no
improvement (results not shown).
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of the potential limitations of DT-PINNs: they may not offer speedups over vanilla-PINNs if
nonlinear terms not involving differential operators dominate training times.

4.4 Heat equation

(a) (b)

Figure 5: fp64 DT-PINN and fp32 vanilla-PINN results on heat equation for all p on N = 828
spatial points and Nt = 24 time-steps. The figure shows (a) the relative error for fp64 DT-PINNs
as a function of approximation order p; and (b) the speedup attained by fp64 DT-PINNs over fp32
vanilla-PINNs as a function of p. Error bars over 5 random runs are shown.

Next, we compare fp64 DT-PINNs and fp32 vanilla-PINNs on the 2D heat equation. In order to
demonstrate the flexibility of our method, we adopt a mixed training approach where only spatial
derivatives are discretized with RBF-FD. We specify the true solution u to be

u(x, t) = u(x1, x2, t) = 1 + sin(πx1) cos(πx2) sin(πt), (20)

and specify f = ∂u
∂t −∆u so that the solution u satisfies the heat equation for all space-time. We

compute the initial condition as u0(x, 0) = u(x1, x2, 0) = 1. We trained on N = 828 spatial
collocation points over 25 time slices (including time t = 0) for a total of 20, 700 spacetime
collocation points; we express all results as a function of p. These results are shown in Figure 5.
First, Figure 5a shows similar results to the 2D Poisson equation, with p > 2 achieving relative
errors similar to fp32 DT-PINNs. Figure 5b shows that we achieve 2-4x speedups over vanilla-PINNs.
We observed in our experiments that the speedup appears to increase as a function of the number
of time-steps Nt (results not shown). It is likely that one could achieve further speedups by also
discretizing the temporal derivatives, but we leave this exploration for future work.

5 Summary and future work
We presented a novel technique, DT-PINNs, that involves training PINNs by using RBF-FD for
spatial derivatives, and using fp64 weights and training instead of fp32. This involved replacing
all autograd operations (dense matrix-matrix multiplies) related to PDE loss terms with an SpMV
operation. We showed that using an RBF-FD approximation order of p > 2 resulted in DT-PINNs
that were comparable in accuracy to vanilla-PINNs while offering 2-4x speedups in training times for
both the linear and nonlinear Poisson equations. We also showed that DT-PINNs trained in a mixed
fashion (autograd for time, RBF-FD for space) also achieved comparable accuracy and speedup on
the heat equation. DT-PINNs therefore constitute a new paradigm for scientific machine learning that
allow practitioners to leverage existing sophisticated scientific computing techniques to accelerate
ML training times.

There are several possible extensions to our current work. It is likely that using DT-PINNs in
conjunction with X-PINNs and G-PINNs will yield even greater speedups in training times. Further,
DT-PINNs open the door to leveraging compute more efficiently. For instance, the SpMV operations
could be parallelized using distributed memory systems in conjunction with GPUs, thereby allowing
scaling to very large training sets; alternatively, the SpMV operation could be parallelized on many-
core CPUs while other operations are conducted on the GPU. It may also be profitable to explore
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mixed-precision training of DT-PINNs. Finally, DT-PINNs can be viewed as vanilla-PINNs with
partially linearized constraints; it may be profitable to explore other types of constraint linearization
to accelerate training and simplify loss function landscapes.
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A Appendix

A.1 Additional results
In this section, we present additional results that help clarify details of our method.

A.1.1 Higher order derivatives

(a) (b)

Figure 6: Autograd properties as a function of network depth s. The figure shows (a) effect of neural
network depth s on the relative error (with respect to fp64 autograd) and (b) time taken for one
application of autograd on fp32 and fp64, compared to the time taken for SpMV using RBF-FD for
computing ∆2u(x) in d = 2. Error bars over 15 random runs are shown.

We also study the effect of PINN depth on computing the biharmonic operator ∆2 of the output with
respect to the spatial variable x using either autograd or RBF-FD. We compute errors against fp64
autograd for fp32 autograd and for RBF-FD with p = 2, 3, 4, and 5. All errors were computed on
N = 4977 quasi-uniform collocation points. The results are in shown in Figure 6a. Much like for the
Laplacian ∆, we see fp32 autograd is the most accurate, and that increasing p increases the accuracy
of RBF-FD by about two orders of magnitude. In Figure 6b, we report the time taken for the same
test. It is clear that RBF-FD offers even greater speedups for approximating high-order differential
operators.

A.1.2 fp32 DT-PINN
Figure 7 shows results for fp32 DT-PINNs on the linear Poisson equation. While speedups over
vanilla-PINNs are similar to fp64 DT-PINNs, they suffer from a degradation in accuracy for all
values of p compared to both fp64 DT-PINNs and vanilla-PINNs. These results demonstrate that
the combination of fp64 and discrete training is key to achieving training speedups without a loss in
accuracy, but that fp32 DT-PINNs are also viable alternatives to vanilla-PINNs.

A.1.3 Star shaped domain
In Figure 8 we present results for fp64 DT-PINNs and fp32 vanilla-PINN on the linear Poisson
equation with a star shaped domain. DT-PINNs with p > 2 achieve the same relative errors as
vanilla-PINN. DT-PINNs also obtain a maximym of 2x speedup over vanilla-PINN ignoring p = 2.
Similar to the results in unit disc domain, DT-PINNs are faster than vanilla-PINNs while getting
competitive or even better accuracies.
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(a) (b) (c)

Figure 7: fp32 DT-PINNs on the linear Poisson equation (3) for different numbers of collocation
points (N ) and orders of accuracy (p). We show (a) the relative error in the PINN solution; (b) the
time taken to converge to lowest relative error; and (c) the speedup attained by fp32 DT-PINNs
relative to fp32 vanilla-PINN for those times.

(a) (b) (c)

Figure 8: fp64 DT-PINNs on the linear Poisson equation (3) for different numbers of collocation
points (N ) and orders of accuracy (p) with a star shaped domain. We show (a) the relative error in the
PINN solution; (b) the time taken to converge to lowest relative error; and (c) the speedup attained by
fp32 DT-PINNs relative to fp32 vanilla-PINN for those times. Results shown over a single random
seed.

A.2 Implementation

From a practical implementation standpoint, DT-PINNs differ from vanilla-PINNs in several ways
beyond the replacement of autograd with differentiation matrices. We discuss some of the details of
our implementation within the PyTorch framework (24).

Efficient sparse matrix storage and operations on the GPU Since DT-PINNs replace all autograd
computations in the loss function with an SpMV, we use the compressed sparse row (CSR) format for
storing L and B; this ensures both ease of parallelization and compact storage. As of this writing,
PyTorch support for SpMV operations in the CSR format on the GPU is limited and somewhat
inefficient. To overcome this limitation, we used the CuPy library (21) for all SpMV operations. We
also use the DLPack library to enable memory and context sharing between CuPy and PyTorch.
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Custom autograd implementation As of this writing, PyTorch is in general unable to apply autograd
with respect to the weight vector w to loss terms involving CuPy CSR matrices. To overcome this
issue, we wrote custom autograd classes in PyTorch. Consider the second term in (12), ‖Lũ− f‖22.
According to the PyTorch API, a custom autograd class for handling this term must supply two
methods: a forward method that tells PyTorch how to evaluate it, and a backward method that tells
PyTorch how to compute the product (∇ũ (Lũ− f)) (∇wũ). As ∇ũ (Lũ− f) = LT , our custom
PyTorch backward method can be expressed as a CuPy-based SpMV of LT and ∇wũ, the latter of
which PyTorch automatically supplies; loss terms involving B are handled similarly. The forward
method to evaluate the loss term is also an SpMV between L and ũ. The overall procedure is similar
for the heat equation as well.

Code listings We first show the CuPy custom autograd methods for the SpMV operations in the
autograd term. The required imports are:

1 import torch
2 from torch.utils.dlpack import to_dlpack , from_dlpack
3 import cupy
4 from cupy.sparse import csr_matrix

The following Python class defines the forward and backward methods to connect the CuPy SpMV
with the native PyTorch tensors.

1 class Cupy_L(torch.autograd.Function ):
2 @staticmethod
3 def forward(ctx , pinn_pred , sparse_mat ):
4 return from_dlpack(sparse_mat.dot(
5 cupy.from_dlpack(to_dlpack(pinn_pred ))
6 ). toDlpack ())
7

8 @staticmethod
9 def backward(ctx , grad_output ):

10 return from_dlpack(L_t.dot(
11 cupy.from_dlpack(to_dlpack(grad_output ))
12 ). toDlpack ()), None
13

14 # class Cupy_B can be similarly defined

where L_t is the transpose of the L matrix:

1 L_t = csr_matrix(self.L.transpose(), dtype=np.float64)

Each DT-PINN training step in linear Poisson can then be written as follows:

1 # we use the L-BFGS optimizer provided by PyTorch
2 def closure ():
3 self.optimizer.zero_grad ()
4 u_tilde = self.pinn_weights.forward(self.X_tilde)
5

6 pde_residual = L_mul(u_tilde , self.L) - self.f
7 bdry_residual = B_mul(u_tilde , self.B) - self.g
8

9 pde_loss = torch.mean(torch.square(torch.flatten(pde_residual )))
10 bdry_loss = torch.mean(torch.square(torch.flatten(bdry_residual )))
11

12 train_loss = interior_loss + boundary_loss
13 train_loss.backward(retain_graph=True)
14 return train_loss.item()
15

16 loss_value = self.optimizer.step(closure)

where self.X_tilde is X̃ and L_mul and B_mul are:

1 L_mul = Cupy_L.apply
2 B_mul = Cupy_B.apply

14


	1 Introduction
	2 Review
	2.1 Physics-informed neural networks
	2.2 Radial basis function-finite differences (RBF-FD)

	3 Discretely-Trained PINNs (DT-PINNs)
	4 Results
	4.1 Effect of neural network depth
	4.2 Linear Poisson equation
	4.3 Nonlinear Poisson equation
	4.4 Heat equation

	5 Summary and future work
	A Appendix
	A.1 Additional results
	A.1.1 Higher order derivatives
	A.1.2 fp32 DT-PINN
	A.1.3 Star shaped domain

	A.2 Implementation


