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Abstract

We present a novel property-preserving kernel-based operator learning method for incompressible

�ows governed by the incompressible Navier�Stokes equations. Traditional numerical solvers

incur signi�cant computational costs to respect incompressibility. Operator learning o�ers

e�cient surrogate models, but current neural operators fail to exactly enforce physical properties

such as incompressibility, periodicity, and turbulence. Our method maps input functions to

expansion coe�cients of output functions in a property-preserving kernel basis, ensuring that

predicted velocity �elds analytically and simultaneously preserve the aforementioned physical

properties. We evaluate the method on challenging 2D and 3D, laminar and turbulent,

incompressible �ow problems. Our method achieves up to six orders of magnitude lower relative

ℓ2 errors upon generalization and trains up to �ve orders of magnitude faster compared to neural

operators. Moreover, while our method enforces incompressibility analytically, neural operators

exhibit very large deviations. Our results show that our method provides an accurate and e�cient

surrogate for incompressible �ows.

Keywords: Operator Learning, Surrogate Modeling, Incompressible Flow, Kernel Methods

Incompressible �uid �ows arise in an enormous range of engineering and scienti�c applications,
such as the study of �ow past airfoils & wings [1], aerodynamics [2�4], weather prediction [5], chemical
mixing [6], and hemodynamics [7�12]. These �ows are typically modeled with the incompressible
Navier�Stokes (INS) equations given by:

Bu

Bt
+ (u ⋅ ∇)u = ν∇2u − 1

ρ
∇p + 1

ρ
f , on Ω × (0, T ], (1)

∇ ⋅ u = 0, on Ω × (0, T ], (2)

Bu = g, on BΩ × (0, T ], (3)

u(x,0) = u0(x), on Ω, (4)

where u is the divergence-free velocity �eld, p is the pressure, ν is the kinematic viscosity, ρ is
the �uid density, f is the external body forces, B denotes the boundary operator, and u0 and
g are the initial and boundary conditions respectively. These equations constitute a system of
nonlinear partial di�erential equations (PDEs) and encompass a variety of physical phenomena such
as boundary layers, vortex dynamics, �ow separation, and turbulence. The challenging nature of these
PDEs necessitates specialized numerical discretizations of which there are four dominant classes: (1)
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Fig. 1: Schematic diagram of the proposed property-preserving kernel method.

saddle-point methods, which solve the coupled PDE system directly and reach arbitrary orders of
accuracy [13�16]; (2) high-order methods that treat the pressure explicitly and recover it via the
pressure Poisson equation (�PPE� methods) [15, 17, 18]; (3) arti�cial compressibility methods [19, 20];
and (4) temporally low-order projection-based methods [21�27]. All of these methods come with
their own computational bottlenecks, typically requiring problem-speci�c preconditioners [15, 16, 28],
expensive Poisson solves [17, 29, 30] or vector Helmholtz solves [20, 31]. Further, explicit treatment
of the nonlinear advection term leads to the Courant�Friedrichs�Lewy (CFL) stability constraint,
severely limiting admissible time-step size [32]. These issues have led to a growing interest in
developing surrogate models that can reduce the cost of obtaining solutions for new problem
con�gurations [33�36]. Surrogate models for PDEs include reduced order models [37, 38], machine
learning (ML) based methods [39�45]. More recently, operator learning models [46] that act directly
on function spaces have emerged as a competitive class of surrogates. Operator learning seeks
to approximate the solution operator of the PDE as a mapping from input functions (geometry,
PDE parameters, initial conditions, and/or boundary conditions) to output functions (solutions).
Prominent neural operator architectures include deep operator networks (DeepONets) [47], which
train two separate neural network in conjunction; Fourier neural operators (FNOs) [48] and
their geometrically-�exible variants such as the Geo-FNO [48], which involve kernel-based integral
operators computed implicitly via the fast Fourier transform(FFT); the kernel neural operator
(KNO) [49] which uses explicit kernels and quadrature instead of the FFT; deep Green networks
(DGN) [50, 51] and their graph neural operator (GNO) counterparts [52], which aim to learn the
Green's kernel either globally or locally; and more recently, transformer-based neural operators that
leverage the attention mechanism [53�55]. Complementary to these methods, recent work [56, 57]
has shown that kernel/Gaussian process (GP) regression can be competitive for operator learning
as well. Kernel methods for operator learning are meshless and typically use only a single trainable
parameter; note that operator-valued kernels were �rst introduced in Kadri et al. [58, 59]. Despite
these advances, to the best of our knowledge, current operator learning techniques are unable to
analytically and simultaneously satisfy multiple �uid properties such as incompressibility, periodicity,
and turbulence-related power laws. Recent attempts in this direction with either soft constraints [60�
63] or hard constraints [64, 65] have only succeeded in approximate enforcement of incompressibility.
Unfortunately, a surrogate that fails to analytically satisfy these properties can produce physically-
inconsistent predictions, accumulate spurious divergence, or be unable to replicate key �ow features
even if its pointwise errors are small.

In this work, we address this gap by introducing a novel property-preserving kernel-based operator
learning method for incompressible �ows. Unlike the kernel method in Batlle et al. [56], we learn
a map from input function samples to interpolation coe�cients associated with output functions,
where these coe�cients are associated with a kernel basis that is analytically property-preserving.
Our framework uses two kernel interpolants: (1) one that interpolates the output functions using a
property-preserving kernel basis, and (2) one that consumes input functions and �ts the interpolation
coe�cients from (1). The resulting method only uses two trainable parameters. This approach
decouples pointwise generalization errors in our surrogate models from their ability to respect
physical constraints; while the former still depends on the training data, the latter is always
guaranteed to machine precision; see Figure 1 for an illustration of our method.

We illustrate the capabilities of our method with extensive numerical experiments on an extensive
suite of 2D and 3D problems involving incompressible �ows. We construct surrogates that are
all analytically incompressible on generalization, but that also analytically satisfy periodicity or
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turbulence-related power laws when applicable. Across these problems, we compare our method
against the vanilla kernel method in Batlle et al. [56], and two state-of-the-art neural operator
baselines, Geo-FNO [66] and Transolver [67]. The resulting method is meshless; interpretable;
typically orders of magnitude more accurate than existing neural operator approaches even in
pointwise generalization errors; analytically property-preserving (if the properties are known in
advance); more e�cient than neural operators in terms of trainable parameter counts (two for our
method vs millions for neural operators); and orders of magnitude faster in terms of training time.

The remainder of the paper is organized as follows. Section 1 presents results on numerical
experiments on incompressible �ow problems, comparing our method against competitors in terms
of accuracy, divergence, and runtime. In Section 2, we discuss the implications of the results in detail
and discuss future directions. In Section 3, we present the mathematical formulation of the property-
preserving kernel method, with a focus on incompressibility, periodicity, and turbulence-related power
laws. We also present approximation theorems regarding convergence rates of the method.

1 Results

We now present experimental results comparing our method with operator learning baselines on
a diverse set of challenging 2D and 3D operator learning problems involving incompressible �ows. We
demonstrate that the property-preserving kernel method (PPKM) consistently outperforms state-
of-the-art neural operators by several orders of magnitude in accuracy while analytically preserving
incompressibility and other properties across the board. We compared our method against three
baselines: (i) the �vanilla� kernel method (VKM) [56], (ii) the Geo-FNO (geometry-aware FNO) [66],
and (iii) the Transolver [67]; implementation details in Appendix E. Several variations of the PPKM
were used in the experiments; the π-PPKM is spatially periodic, the η-PPKM incorporates turbulence
power laws, and the πη-PPKM includes both properties. The PPKM (and its variations) and VKM
were trained on the NVIDIA RTX 4080 GPU (with the selection of the shape parameter ϵ done
on an AMD Ryzen 16-core CPU) using double precision while the neural operators were trained on
the stronger NVIDIA A100 and A40 GPUs in single precision; these neural operators typically had
too many parameters to allow for double precision training. Despite our use of double precision, our
method consistently trains orders of magnitude faster than the neural operators, though it exhibits
an order of magnitude slower inference times.

Experimental details: All datasets (except for the Taylor�Green vortices problems, which have
analytical solutions) were produced using the SU2 numerical solver [68] for incompressible �ows [69],
which uses a second-order accurate �nite volume method on unstructured meshes. Moreover, SU2
supports a variety of boundary conditions (BCs), including but not limited to periodic BCs, no-
slip BCs, and wall functions for turbulent �ow. For the turbulent problems explored, we solved the
incompressible Reynolds averaged Navier�Stokes (RANS) equations in SU2 with the Shear Stress
Transport (SST) turbulence model. We produced domain geometry meshes using gmsh [70] and used
them within SU2; these scripts will be provided in the codebase upon publication of the manuscript.
Table 2 lists the details pertaining to the �ow in each problem; the relevant �ow regime, forcing
term f , initial (IC) and boundary conditions, time domain, and operator learning map. For each
problem, we generated 10,200 time dependent simulations of which N = 10,000 were used for
training and Ntest = 200 for testing. Following the mathematical notation introduced in Section 3, the
input functions a ∈ A may be scalar- or vector-valued; in contrast, the output functions are always
vector-valued incompressible velocity �elds. We used the truncated normal distribution for randomly
sampling governing parameters such as initial velocity, viscosity, leading coe�cients, etc. We de�ne it
as N[a,b](µ,σ), where µ is the mean, σ2 is the variance, and the random variables are sampled in the
range [a, b]. This section reports the results for four important 2D and 3D experiments (two each);
results for additional classical benchmark problems are reported in Appendix B. In Appendix C, we
also present results on the e�ect of the ridge parameter θ on the accuracy of our method. Section 1.3.1
discusses results from a GP experiment for uncertainty quanti�cation using the 3D species transport
example as a case study (see Section 3.3.1 for details).

Metrics reported: Let ṽ ∈ Rm and v ∈ Rm be the vectors containing the pointwise velocity
magnitudes of the predicted and true velocity �elds respectively. We report the spatial relative ℓ2
error computed as (∥ṽ−v∥2)/∥v∥2, i.e., the relative error in the magnitudes. Further, we report the
maximum pointwise interior divergence (to remove possible edge e�ects). Both metrics are averaged
over the test functions. We additionally performed ablation studies over the number of training
functions N (uniformly sampled at random without replacement) and the number of spatial samples
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m and report the results with the combination that yielded the lowest errors for our method. For
the Geo-FNO, we reported errors across all N using the largest available m for each problem.
Additionally, at the value of N yielding the lowest error for the property-preserving kernel method,
we reported Geo-FNO and Transolver errors using the same spatial resolution m. Table 1 reports the
relative ℓ2 errors, maximum pointwise divergence, training and inference (on training set) times, and
the θ used by the proposed method. Section 3.4.3 describes how training times are computed for the
property-preserving and vanilla kernel methods. We now present each of our benchmark problems.

Table 1: Accuracy, divergence, and runtime results. For each problem, we reported the spatial rel.
(relative) ℓ2 error and maximum pointwise divergence on the test set, total training time, and inference
time (on the training set) corresponding to m points and N training functions they were trained with,
and the θ used by the PPKM and the VKM. The runtimes are reported in seconds. We report the
(statistically signi�cant) mean results for the Geo-FNO and the Transolver models over three random
seeds. The choice of the PPKM is shown next to the relative ℓ2 error (see Section 3.2 for notation). The
PPKM and the VKM were trained in double precision while the neural operators were trained in single
precision. ∼ indicates a blowup in the divergence magnitude (> 103).

Problem m N θ Metric PPKM VKM Geo-FNO Transolver

2D Flow Past a Cylinder 1000 100 10−6

rel. ℓ2 error 3.95 × 10−5,Φ 5.32 × 10−5 9.88 × 10−4 8.02 × 10−3

Divergence 0 0.788 0.725 0.652

(no vortex shedding) Training time 0.80 0.81 176 55

Inference time 0.25 0.25 0.19 0.09

2D Flow Past a Cylinder 1000 10,000 10−6

rel. ℓ2 error 3.14 × 10−7,Φ 2.34 × 10−6 4.62 × 10−5 1.19 × 10−4

Divergence 0 2.89 2.498 2.497

(vortex shedding) Training time 77 77 11,462 4139

Inference time 4.19 4.19 0.14 0.069

2D Lid�Driven Cavity 1000 10,000 10−6

rel. ℓ2 error 1.39 × 10−6,Φ 1.45 × 10−6 2.19 × 10−4 1.89 × 10−4

Divergence 0 7.96 29.596 29.537

Flow Training time 77 77 6314 3934

Inference time 4.19 4.19 0.085 0.065

2D Backward�Facing 1000 500 10−6

rel. ℓ2 error 1.51 × 10−6,Φ 2.9 × 10−6 1.055 × 10−3 1.065 × 10−3

Divergence 0 0.907 0.765 0.782

Step Training time 0.91 0.92 191 239

Inference time 0.26 0.26 0.056 0.079

2D Buoyancy�Driven 5000 10,000 10−4

rel. ℓ2 error 6.27 × 10−6,Φ 6.14 × 10−6 1.44 × 10−4 1.69 × 10−4

Divergence 0 4.28 3.213 3.213

Cavity Flow Training time 92 92 21,373 16,277

Inference time 12 12 0.30 0.29

2D Taylor�Green 500 5000 10−8

rel. ℓ2 error 8.76 × 10−10,Φπ 1.68 × 10−9 5.31 × 10−4 1.22 × 10−4

Divergence 0 1.42 12.313 1.426

Vortices Training time 25 26 2419 1988

Inference time 0.78 0.78 0.066 0.050

2D Taylor�Green 500 5000 10−8

rel. ℓ2 error 8.65 × 10−10,Φπ 8.67 × 10−10 8.75 × 10−4 3.07 × 10−4

Divergence 0 14.58 ∼ ∼

Vortices, Spacetime Training time 26 26 5966 4580

Inference time 1.25 1.17 0.16 0.17

2D Merging Vortices 500 500 10−4

rel. ℓ2 error 1.09 × 10−4,Φπ 1.09 × 10−4 5.8 × 10−3 3.44 × 10−3

Divergence 0 0.56 1.048 1.034

Training time 0.87 0.89 308 200

Inference time 0.25 0.24 0.080 0.063

3D Species Transport 7000 10,000 10−4

rel. ℓ2 error 2.38 × 10−4,Φη 2.35 × 10−4 5.11 × 10−4 2.26 × 10−3

Divergence 0 ∼ ∼ ∼

Training time 90 83 80,738 23,901

Inference time 21 20 1.13 0.43

3D Flow Past an 500 7000 10−4

rel. ℓ2 error 0.506,Φπ,η 0.726 0.477 0.600

Divergence 0 1.44 ∼ ∼

Airfoil Training time 53 53 31,535 5721

Inference time 0.25 0.28 0.55 0.19
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1.1 2D �ow past a cylinder
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Fig. 2: The 2D laminar �ow past a cylinder problem. (A) and (B) show examples of an input
function (the initial velocity) and an output function (the �nal velocity), respectively, from the vortex
shedding regime. (C) and (D) show the test relative ℓ2 errors and training runtimes as functions of
N for the vortex shedding regime. (E) and (F) show the same results for the regime without vortex
shedding.

This classical problem [71�74] describes laminar �uid �ow past a 2D cylinder of radius 0.8 centered
at (1.5,10) within a rectangular domain Ωa = Ωv = [0,20] × [0,14] representing a channel. We
generated a 2D mesh with 9520 points such that the re�nement near the cylinder was at least twice
as �ne as it was elsewhere. We prescribed an inlet BC on the left boundary, free stream BC on the
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top and bottom boundaries (set to be the same as the inlet velocity), a no slip BC on the cylinder,
and a zero pressure BC on the right boundary. We generated simulations in two �ow regimes, with
and without vortex shedding [75] in the wake of the cylinder. The IC was varied across simulations,
but always set to a constant velocity everywhere sampled from N[0.1,0.26](0.18,0.026) for the case
without vortex shedding; and from N[0.45,0.8](0.625,0.1) with vortex shedding. The simulations were
run to T = 10 with a time-step ∆t = 10−3. We then learned the operator map G ∶ u(x,0) → u(y,10).
The Reynolds numbers for these �ow regimes and the relevant con�guration details are provided in
row 1 in Table 2. Figures 2A and 2B show examples of input and output functions respectively.

The errors reported in Figure 2C show that in the vortex shedding case, our method consistently
performed the best, with lower errors than the neural operators by up to 2 orders of magnitude for
the same m and by up to 2.5 orders of magnitude when the neural operators use a much larger m.
In the �ow without any vortex shedding, our method showed errors (Figure 2E) increasing with N .
We suspect that importance sampling of the input functions would restore the proper convergence
behavior. However, the lowest error was still achieved by our method at N = 100. Further, Figures 2D
and 2F show that our method trained orders of magnitude faster than all the baseline methods.

1.2 2D spacetime Taylor�Green vortices

Taylor�Green vortex �ow [76, 77] describes the 2D laminar �ow of a decaying periodic
vortex in the torus Ωa = Ωv = [0,2π]2 (due to periodic boundary conditions). The �ow admits an
analytic solution u = [u1, u2] where u1(x) = A sin(x1) cos(x2)e−2νt, u2(x) = A cos(x1) sin(x2)e−2νt.
We randomly sampled A ∼ N[0.1,80](40,30) and ν ∼ N[0.0001,1](0.006,0.1); for the domain, we used a
2D triangular mesh with 7477 points. Here, the PPKM analytically enforces both incompressibility
and spatial periodicity; see Section 3.2 for details. We then sought to recover the operator map given
by G1 ∶ u(x,0) → u(y, t), t ∈ T , which maps an initial condition to Ωv ×T where T = [0.7,0.8,0.9,1].
We also alternatively learned the parametric operator map G2 ∶ τ → u(y, t), t ∈ T where Ωa = τ ⊂ R2

is the parameter space of A and ν. We report the relative ℓ2 error and the maximum pointwise
divergence averaged over the four timesteps. Example input and output (at T = 1) functions are
shown in Figures 3A and 3B. Results for the problem focusing on the spatial operator map are shown
in Appendix B.1.

Due to limitations in computational resources, we were unable to report neural operator errors
for di�erent N for G2 in this problem and in Section B.1. Our method signi�cantly outperformed
the neural operator baselines in this problem, achieving up to 4.5 orders of magnitude lower errors
(Figures 3C and 3E) and up to 2.5 orders of magnitude faster training times (Figures 3D and 3F).
Since this problem had no numerical noise in the dataset, all variations of the PPKM and the VKM
achieve similar errors as they are all interpolatory; however, only the PPKM analytically satis�es
periodicity and incompressibility.

1.3 3D species transport

Next, we investigated operator learning on a 3D turbulent �ow problem 1 inspired by the work
of Ubal et al. [78]. This problem models the mixing of air and methane in a static Kenics mixer [78]
with three perpendicular blades twisted along the z axis; see Figure 4C. At the z = 0 plane, we
speci�ed the air's velocity at y < 0 and methane's velocity at y > 0, sampled from N[1,40](20,20); the
velocity everywhere else was initialized to zero. The three blades, inner wall, and outer wall used no-
slip BCs; the outlet boundary at the plane z = 0.26 used a zero pressure BC. We used a maximum
of 7000 approximate kernel Fekete points due to memory constraints. We ran the simulation until
T = 0.5 with ∆t = 0.005. We learned the operator G ∶ uinlet → u(y,0.5). TWe show examples of input
and output functions in Figures 4A and 4B respectively.

We report the errors in Figures 4D. The Geo-FNO achieved lower errors at smaller values of N ,
but was overtaken by the PPKM for larger N . Despite the added computational cost due to the 3D
problem domain, our method was orders of magnitude faster to train than the neural operators (as
shown in Figure 4E).

1.3.1 Uncertainty quanti�cation

We also demonstrate the GP-based uncertainty quanti�cation capabilities of our framework here,
described in Section 3.3.1. We solved (24) and (25) to compute the posterior mean sb and covariance

1https://su2code.github.io/tutorials/Inc_Species_Transport_Composition_Dependent_Model
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Fig. 3: The 2D laminar Taylor�Green vortices problem for the spacetime operator map. (A) and
(B) show examples of an input function (the initial velocity) and an output function (the �nal
velocity) at time T = 1, respectively. Here, the output functions are snapshots of the velocity �eld at
four timesteps (see Section 1.2 for details). (C) and (D) show the test relative ℓ2 errors and training
runtimes as functions of N for the operator map from the initial velocity to the �nal velocity at the
four timesteps. (E) and (F) show the same results for the operator map from the �ow parameters
to the �nal velocity at the four timesteps.
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(A)

(B)

Inlet gas Outlet

Inlet air

Blade 1 Blade 2 Blade 3

Inner walls

Outer walls

(C)

(D) (E)

Fig. 4: The 3D turbulent species transport example. (A) and (B) show examples of an input function
(the inlet velocity of the two gaseous species at the plane z = 0) and an example output function (the
�nal velocity), respectively. (C) shows a top-down yz view of the domain and its placement of the
three blades and the inner walls. (D) and (E) show the test relative ℓ2 errors and training runtimes
as functions of N .
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Σ⋆, respectively, of ξ. Then, we applied a Cholesky factorization on the covariance; Σ⋆ = LLT . Finally,
we used the Φη kernel to obtain velocity �elds corresponding to ±1 standard distribution with the
perturbed coe�cients sb + Lz and sb − Lz. For one of the 200 test functions, we show the posterior
mean velocity �eld in Figure 11A and the corresponding velocity �elds within ±1 standard deviation
in Figures 11B and 11C. The maximum spatial variance for this test function within one standard
deviation was 10−5. All three velocity �elds are divergence-free and encoded with turbulence power
laws by construction.

1.4 3D �ow past an airfoil

Arguably the most di�cult (and possibly ill-posed) problem in this work, this problem attempts
to recover the turbulent �ow �eld in the wake of a 3D airfoil as a function of the shape of the
airfoil on the domain Ωv = [−7,10] × [−7,7] × [0,3]. Let Ωa = τ denote the parametrization of
the airfoil geometry, parametrized using the popular NACA 4-digit series [79]. This format had
three parameters; the position of the camber (measure of airfoil curvature), maximum camber, and
airfoil thickness. We sampled these three parameters from the random distributions N[1,8](3,1.4),
N[3,7](6,2), and N[10,25](22,4), respectively. Then, we sampled an airfoil at 2000 two-dimensional
points (used as input functions) and then extruded it in the z�direction with 20 uniform slices to
obtain a 3D airfoil. The left and right walls had inlet BCs and zero pressure BCs, respectively; the
front and back walls had periodic BCs; the top and bottom walls and the airfoil surface had no-slip
BCs. We ran the simulation until T = 1 with ∆t = 10−2 and measured the velocity on the plane
x = 3 at m = 1000 points. Each simulation used a di�erent airfoil shape causing the resulting mesh
and the number of input points to slightly vary. We obtained the velocity on the plane using local
divergence-free interpolation; a paper on this technique is forthcoming.

We learned the operator map G ∶ τ → u(y,1). Example input and output functions are shown
in Figures 5A and 5B respectively. The errors and runtimes are reported in Figures 5C and 5D
respectively. While all methods generally struggled to be accurate here, the πη-PPKM and π-
PPKM outperformed the PPKM and VKM as N increased. These results show the accuracy bene�ts
of simultaneously enforcing multiple �uid properties in the property-preserving kernel. Using the
e�ciency techniques described in Section 3.4, our method trains orders of magnitude faster than the
neural operators.

2 Discussion

The underlying motivation for this work is the observation that a trustworthy surrogate must
actually satisfy incompressibility and other properties analytically, much like the PDE solvers that
these surrogates aim to replace; while pointwise generalization errors are important, lower errors
alone are insu�cient.

Our property-preserving operator learning framework achieves this through a key idea: learning
maps from input function samples to expansion coe�cients of output functions in a property-
preserving basis. The core of the method involves (1) a property-preserving kernel interpolant for each
training output function that analytically preserves incompressibility, periodicity, and turbulence
(when applicable); and (2) an operator kernel interpolant that maps from input function samples
to the interpolation/expansion coe�cients obtained from (1). We chose kernels for (1) because they
allowed for the simultaneous and analytical enforcement of multiple properties without any feature
engineering; we chose kernels for (2) because kernel methods allow for rapid training at scale. Our
method also allows for natural uncertainty quanti�cation via Gaussian processes (GPs), though this
is not the primary focus of this work. Our method also admits pessimistic and optimistic worst-case
a priori error estimates, which we discuss in Section 3.5.

Remarkably, our results from Section 1 show that the PPKM almost always outperforms
state-of-the-art neural operators (and the vanilla kernel method) even on the metric of pointwise
generalization error across a suite of benchmark problems (see Table 2 for experimental con�guration
details). Our method was anywhere from one to six orders of magnitude more accurate on
generalization. In addition, our method produces analytically incompressible �ow �elds, in contrast
with neural operators; Table 1 shows the latter typically exhibited absolute divergences of O(1) −
O(104) across this benchmark suite. Surprisingly, our method achieves these superior results with
only two trainable parameters� one for the property-preserving interpolant, and one for the
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(A)

(B)

(C) (D)

Fig. 5: The 3D turbulent �ow past an airfoil. (A) and (B) show examples of an input function (the
2D set of points constituting an airfoil shape) and an example output function (the �nal velocity),
respectively. (C) and (D) show the test relative ℓ2 errors and training runtimes as functions of N .
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operator interpolant; in contrast, neural operators typically required O(105) to O(106) trainable
parameters.

The bene�ts of our method extend beyond superior accuracy. The PPKM consistently trains
up to �ve orders of magnitude faster than the neural operators, despite the use of double precision
�oating point (fp64) for our method and single precision �oating point (fp32) for neural operators;
note that it is in general inadvisable to use fp64 with neural operators due to the di�culties in storing
trainable parameters. This training speedup is even more remarkable when one takes into account
the fact that our method was timed on desktop GPUs while the neural operators were trained
on high-end GPU servers. However, this leads to a limitation of our method: our inference times
were typically an order of magnitude slower than neural operators; see Table 1. We are currently
exploring if this was merely due to the di�erence in hardware, but it is also plausible that this was
due to the di�erence in speeds of fp32 and fp64 on modern GPUs. Nevertheless, our method remains
competitive for inference.

Neural operators are able to tackle very large numbers of training functions (N) primarily through
batching techniques, but kernel methods do not directly allow for batching in N . However, our simple
and powerful streaming technique allowed us to apply the kernel method on the GPU e�ciently
even for N = 10,000 training functions. In addition, our recursive Schur complement techniques in
conjunction with careful interpolation node selection allow us to reduce the preprocessing times to
O(dm3) (over a naive O(d3m3)); storage costs to O(dm2) (over a naive O(d2m2)); and inference
times to O(N2 +Ndm2) (over a naive O(N2 +Nd2m2)). These critical details allowed us to actually
tackle large, real-world problems in 3D, using only desktop GPUs. Another contribution of this work,
though not major, is the meticulous and careful documentation of domain geometries, solver details
from the SU2 solver, initial and boundary conditions, and �ow regimes for all of our problems in
Table 2.

We conclude with a discussion on the limitations of our method and avenues for future work. The
primary limitation of kernel methods� which we partially worked around by streaming and e�cient
linear algebra� is the need to store and compute with large dense interpolation and evaluation
matrices. Further, kernel methods typically perform best when at the edge of ill-conditioning (at
least when using kernel translates as the basis), which necessitates the use of fp64 to ensure
high accuracy; however, this in turn leads to slower GPU computation. Further speedups may
be made possible by the use of multipole expansions [80], treecodes [81], sparse kernels [82], and
low-rank approximation [83, 84]. Finally, our approach leverages global property-preserving kernel
interpolation for the output functions, which in�ates memory requirements; local interpolation
techniques o�er a way around this while potentially allowing for greater accuracy. We will also explore
generalizations to compressible �ow, electromagnetism, and magnetohydrodynamics (MHD), each
of which come with their own unique properties and constraints.

3 Methods

3.1 Overview

We now brie�y describe kernel-based operator learning and present the high-level algorithm used
in this work.

3.1.1 An overview of operator learning

Let A and V be two separable Banach spaces of functions and let G ∶ A → V be an operator that
maps functions a ∈ A (input functions) to functions v ∈ V (output functions), i.e. G(a) = v. The goal
of operator learning is to learn an approximation G̃ ≈ G given N pairs of input and output functions,
{(ai, vi)}, i = 1, . . . ,N . Let Ωa and Ωv be the domains for the input and output functions respectively.
The choice of these domains is arbitrary; they can be spatial, spatiotemporal, or parametric, for
instance. In practice, the functions are provided as a �nite number of samples on their respective
domains; let n and m denote the number of samples provided for the input and output functions,
respectively. Further, in the most general setting and the setting of this work, the functions can
be vector-valued so that a ∶ Ωa → Rp and v ∶ Ωv → Rd. In this work, we will focus on a kernel-based
parametrization of G̃, a generalization of the work by Batlle et al. [56].The kernel method for operator
learning (�rst proposed by Batlle et al. [56]) formulates G̃ as

v ≈ G̃(a) = χ ○ f̃ ○ φ(a), (5)
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where χ ∶ Rm → V reconstructs v by interpolating its m samples, φ ∶ A → Rn generates n samples
of a, and f̃ ∶ Rn → Rm maps from n samples of a to m samples of v. Following Batlle et al. [56],
we endow both A and V with reproducing kernel Hilbert spaces (RKHSs) and choose kernel maps
for χ and f̃ . Speci�cally, we choose to work with positive-de�nite radial kernels (also called radial
basis functions or RBFs) so that, assuming pairwise distinct interpolation points, the linear systems
in (8), (18), and (21) admit unique interpolants [85�87].

3.1.2 Our contribution

Algorithm 1 Training and evaluation procedure for the property-preserving kernel method.

Require:
1: Training dataset: N pairs of input and output function evaluations, {(ai,vi)}Ni=1.
2: Inference example: (a⋆,v⋆) is an unseen pair of input and output function evaluations.
3: Property-preserving kernel Φ and operator kernel λ. Ridge parameter θ.
Let: a ∈ Rnp and v ∈ Rmd denote the column vectors of the training input and output function

evaluations respectively.
Let: v⋆ ∈ Rm⋆d denote the column vector of the inference output function evaluations at m⋆ points.
Let: Φ denote the md ×md Gramian matrix associated with Φ, see Section 3.2 for details.
Let: K denote the N ×N Gramian matrix associated with λ, see Section 3.3 for details.
Let: K⋆ denote the 1×N operator kernel evaluation matrix and Φ⋆ denote the m⋆d×md property-

preserving kernel evaluation matrix.
Training:
1: Solve the block linear system (8) for bi, i = 1, . . . ,N using the techniques in Section 3.4.2.
2: Find ϵ as the root of the function κ(Kϵ) − 1015 using the approach outlined in Section 3.4.1.
3: Solve the linear system (22) for cj , j = 1, . . . ,md, using ϵ and θ.
Generalization:

1: Obtain output coe�cients as b⋆ ←
⎡⎢⎢⎢⎢⎢⎣

K⋆c1

⋮
K⋆cmd

⎤⎥⎥⎥⎥⎥⎦
∈ Rmd.

2: Obtain a property-preserving prediction ṽ⋆ ←Φ⋆b⋆.

Our method emerges from the observation that if χ is carefully constructed to be a matrix-
valued kernel interpolant that analytically enforces desirable properties (such as incompressibility,
periodicity, and turbulence) when interpolating v, then changing f̃ to output expansion coe�cients in
that kernel interpolant ensures that all predictions made by G̃(a) for every a will automatically (and
analytically) satisfy those properties as well. Our method therefore has two main components; (i)
the vector-valued operator kernel interpolant f̃ , and (ii) the vector-valued property-preserving
kernel interpolant χ. We summarize the method in Algorithm 1; describe the two components in
detail in Sections 3.2 and 3.3; and present relevant implementation details in Section 3.4. A schematic
of our method is shown in Figure 1.

A note on block vector notation: We brie�y describe the vector notation used throughout
this section for input and output function evaluations. Let v ∶ Rd → Rd be a vector valued function
that is evaluated at a set of points {yj}mj=1 ⊂ Rd. We denote these evaluations by the block vector

v =
⎡⎢⎢⎢⎢⎢⎣

v1

⋮
vd

⎤⎥⎥⎥⎥⎥⎦
∈ Rmd, (6)

where each block vk = [vk(y1), . . . , vk(ym)]
T ∈ Rm contains the evaluations of the kth spatial

component of v. This notation is helpful when discussing vector-valued kernel interpolants.

3.2 The property-preserving kernel interpolant

We now discuss how various properties can be analytically encoded into a kernel basis. For
this work, the relevant function spaces V always consist of incompressible velocity �elds which are
solutions to PDEs such as (1). Additionally, depending on the problem, these velocity �elds can also
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exhibit spatial periodicity (due to boundary conditions) and turbulence (due to modeling choices).
In our method, we use a property-preserving kernel basis in χ such that the velocity �elds recovered
analytically preserve these spatial properties.

Let Y = {yj}mj=1 ⊂ Ωv ⊂ Rd be a set of spatial points where an output function v ∶ Rd → Rd is

evaluated; further, let the block vector v = [v1, . . . ,vd]T ∈ Rmd denote the function evaluations of
v at Y . Letting Φ ∶ Rd ×Rd → Rd×d be a matrix-valued positive-de�nite property-preserving kernel
(described in the following subsections), we explicitly write the resulting kernel interpolant as

χ(y) =
m

∑
j=1

Φ(y, yj) bj , (7)

where bj ∈ Rd. In order to interpolate v, we enforce χ(y) = v(y) for all y ∈ Y . These interpolation
conditions give rise to the linear system

Φb = v, (8)

where Φij = Φ(yi, yj) is the md ×md block Gramian matrix arising from evaluations of Φ, and

b = [b1, . . . ,bd]T ∈ Rmd contains the interpolation coe�cient vectors for each spatial component. In
the operator learning setting, there are multiple such target functions vi; we denote by bi ∈ Rmd the
coe�cient vector for the ith output function, and by bji its j

th component. The system (8) has a unique
solution if the points in Y are distinct [82, 86]. This md ×md system is computationally expensive
to solve (O(d3m3) operations for a Cholesky factorization, and O(d2m2) operations for subsequent
solves for each right-hand side). However, we never form and store Φ, but instead compute only with
the individual blocks in Φ, reducing the solution cost signi�cantly. These details are described in
Section 3.4. Once the interpolation coe�cients in (7) are computed, the interpolant can be evaluated
at any location (ideally within the hull of Y ). Let Y ∗ be a set of m∗ evaluation locations. Then, the
evaluation of χ(y) at Y ∗ can be written as a matrix-vector product

χ(y)∣Y ∗ =Φ
∗b, (9)

where Φ∗(y∗k , yj), k = 1, . . . ,m∗, j = 1 . . . ,m is the m∗d ×md (rectangular) evaluation matrix.
Thus far, our description of these property-preserving matrix-valued kernels has been abstract.

In the following subsections, we describe in detail how to simultaneously encode incompressibility,
periodicity, and turbulence in Φ.

3.2.1 Incompressibility

The primary goal of this work is the high-�delity surrogate modeling of incompressible �uid �ows.
To that end, our matrix-valued kernel Φ and the corresponding property-preserving interpolant (7)
always enforce incompressibility analytically.

The approximation of divergence-free (incompressible) vector �elds has a long history in the
numerical methods and approximation literature. Classical divergence-conforming �nite element
spaces, such as the Raviart�Thomas [88], Brezzi�Douglas�Marini [89], and Nédélec elements [90],
enforce the divergence-free constraint by construction through their basis functions, yielding local
and exactly divergence-free numerical solutions. This paradigm established the foundational principle
of enforcing physical constraints by restricting the admissible solution space. However, these
constructions rely on polynomial interpolation over simplices, thereby necessitating spatial meshes.
Subsequent work in the meshfree approximation literature led to the construction of matrix-valued
divergence-free kernels from scalar-valued positive-de�nite kernels [91�95], even leading to numerical
methods for meshfree Helmholtz-Hodge decompositions and incompressible �ow solvers [96�99].
While Algorithm 1 can easily leverage mesh-based divergence-free approximations, we choose to use
kernel-based methods as they are (1) meshfree and therefore more general; and more importantly
(2) can simultaneously encode multiple properties in addition to incompressibility.

We now describe the kernel construction used in this work. Let ϕ ∶ Rd×Rd → R be a scalar-valued
positive-de�nite kernel that is at least C2(Rd). The associated divergence-free matrix-valued kernel
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is de�ned by

Φ(x, y) = ∇y ×∇x × ϕ(x, y), (10)

where the di�erential operators act componentwise, and x = (x1, . . . , xd) and y = (y1, . . . , yd) are
points in Rd. For d = 2, we obtain the following matrix-valued kernel

Φ(x, y) = [ Bx2By2 −Bx1By2

−Bx2By1 Bx1By1

]ϕ(x, y). (11)

Whereas for d = 3 we obtain

Φ(x, y) =
⎡⎢⎢⎢⎢⎢⎣

Bx3By3 + Bx2By2 −Bx1By2 −Bx1By3

−Bx2By1 Bx3By3 + Bx1By1 −Bx2By3

−Bx3By1 −Bx3By2 Bx2By2 + Bx1By1

⎤⎥⎥⎥⎥⎥⎦
ϕ(x, y). (12)

By construction, each column of Φ is divergence free with respect to the evaluation coordinate y,
and the resulting kernel is positive-de�nite; a simpli�ed form is also readily available for radial
kernels [97]. An important consequence of this construction is that any kernel interpolant of the
form (7) lies in a divergence-free space. Consequently, the interpolant χ satis�es ∇ ⋅ χ = 0 pointwise
throughout the domain, independently of the sampling locations or interpolation coe�cients. This
provides an analytically exact enforcement of incompressibility.

3.2.2 Periodicity

In addition to incompressibility, many applications require velocity �elds to satisfy periodic
boundary conditions, typically for enabling the modeling of larger physical domains at lower
computational cost but also for modeling truly periodic domain geometries. Given that we began with
the divergence-free kernel Φ, this now opens up the issue of additionally incorporating periodicity
into Φ.

In the kernel and RBF literature, periodic structure is imposed in settings ranging from
interpolation on periodic domains [86, 100] to the numerical treatment of periodic boundary
conditions [101] and closed curves [102]. Existing approaches fall into three broad categories: Fourier-
based constructions, direct kernel and RBF modi�cations on periodic domains, and embedding-based
techniques that enforce periodicity by construction. Fourier spectral and pseudospectral methods
are classical tools for approximating periodic functions [103�105], while kernel and RBF methods
impose periodicity via kernel periodization and lattice-point methods [106�108]. Embedding-based
methods encode periodicity through an explicit embedding of Euclidean coordinates into a compact
manifold, most commonly the circle or torus. This idea has been employed in numerical methods for
PDEs on the sphere [109, 110]; for elastic surfaces in �uid-structure interaction problems in Shankar
et al. [111], Shankar and Olson [112], Kassen et al. [113]; and for problems posed on tori in Owhadi
[99], Fuselier and Wright [114].

Adopting the embedding-based approach, we enforce periodicity by composing kernels with
an explicitly periodic embedding into a higher-dimensional Euclidean space. With this approach,
periodicity is enforced by construction, allowing standard kernel constructions to be used without
requiring kernel periodization. Speci�cally, we de�ne an embedding h ∶ Td → R2d as

h(y) = (cos(y1), sin(y1), . . . , cos(yd), sin(yd)). (13)

Composition with h induces 2π-periodicity in each spatial coordinate. Let ϕπ ∶ R2d ×R2d → R be a
scalar-valued positive-de�nite kernel de�ned on the embedding space, i.e., ϕπ(x, y) = ϕ(h(x), h(y)),
where ϕ is some positive-de�nite kernel. Applying the standard curl-curl construction from (10) on
ϕπ gives the periodic, divergence-free, matrix-valued kernel

Φπ(x, y) = ∇y ×∇x × ϕπ(h(x), h(y)), (14)

which inherits periodicity directly from the embedding and is therefore also 2π-periodic in each
spatial coordinate; note that this kernel is no longer radial. If periodicity must be imposed in only
one coordinate, we modify h(y) to only incorporate the torus embedding into that coordinate.
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3.2.3 Turbulence through power laws

Finally, we turn our attention to creating reliable surrogates for turbulent incompressible
�ows. Turbulence in incompressible �ow is a high-Reynolds-number regime of the Navier-Stokes
equations characterized by nonlinear vortex stretching, broadband energy cascades, and anomalous
dissipation [115, 116]. It is ubiquitous in geophysical and engineering �ows, including atmospheric and
oceanic boundary layers [117, 118], riverine and open-channel �ows [119], and internal and external
aerodynamic �ows [120]. Turbulent �ows arise when the Reynolds number Re = UL/ν ≫ 1 and
exhibit multiscale structure [116, 121]. Modeling therefore requires statistical closures (RANS) [122],
large-eddy simulation (LES) [123], or direct numerical simulation (DNS) [123] depending on the
resolved range of scales [116]; a range of other approaches also exist [123�126]. In the high�Reynolds-
number regime, kinetic energy injected at large scales is transferred to progressively smaller eddies
through nonlinear interactions�Richardson's cascade�until viscous dissipation dominates at the
Kolmogorov scale η ∼ (ν3/ε)1/4, yielding the inertial-range spectrum E(k) ∼ ε2/3k−5/3 [115, 121, 127].

Due to the ubiquity of turbulence in practical applications, we also incorporate turbulence
preservation into our property-preserving kernels by leveraging the fact that Kolmogorov's inertial-
range prediction E(k) ∼ ε2/3k−5/3 implies that second-order statistics scale as power laws in
separation r (e.g., S2(r) = E∣u(x + r) − u(x)∣2 ∼ (εr)2/3), so that velocity �elds exhibit self-similar,
scale-invariant correlations [115, 121]. More speci�cally, we follow Owhadi [99, Section 5.1] and de�ne
an additive multiscale kernel Φη of the form

Φη =
q

∑
s=1

αsΦs, (15)

where σs = σ0

2s
is the shape parameter for Φs (see Section 3.4 for details on how σ0 is picked), αs = σγ

s ,
and

γ =
⎧⎪⎪⎨⎪⎪⎩

4, if d = 2,
2
3
+ 2, if d = 3.

(16)

We set q = 5 for all problems involving turbulence. Here, q denotes the number of modes in the
additive kernel, with each mode associated with a characteristic length scale corresponding to eddies
at that scale [128]. In general, increasing q improves the approximation accuracy of the multiscale
kernel [99, Section 7]. The key idea here is that Φη can analytically mimic the Richardson cascade; in
the continuum limit, this corresponds to representing Φη as a scale mixture whose spectral density
matches the Kolmogorov target.

Simultaneous property-preservation

Though we described Φ, Φπ, and Φη separately, our approach allows for the simultaneous
property-preserving kernel Φπ,η, which is matrix-valued, positive-de�nite, and more importantly,
analytically divergence-free, analytically periodic, and analytically approximating the Richardson
Cascade through power laws. We use this kernel within the property-preserving interpolant for
turbulent, periodic, incompressible �ows. In general, our work involves utilizing known problem
features and the analytic enforcement of these features in our surrogates. We defer detection of these
features to future work.

3.2.4 Spacetime kernel interpolation

In problems where Ωv is a spacetime domain, the interpolant χ must now interpolate spacetime
data. As an example, let Ωv = Ω×Γ, where Ω denotes the spatial domain and Γ denotes the temporal
domain. Consider a function v(x, t), where x ∈ Ω ⊂ Rd and t ∈ Γ ⊂ R. Assume that we are provided
with a set of spatial snapshots of v on Ω at discrete time instances {t1, . . . , tT } as part of our training
data. We now describe how to incorporate the ability to produce such spacetime predictions (upon
generalization) into our surrogate.

We draw from the literature on spacetime kernel design, which employs products of spatial and
temporal kernels [129�139]. Let ψ ∶ R × R → R be a scalar-valued positive-de�nite kernel; we select
ψ = ϕ, but other choices are possible. We then de�ne a spacetime interpolant using the product

15



kernel Φψ; this interpolant takes the form

χ(y, t) =
mT

∑
j=1
(Φ(y, yj)ψ(t, tj)) bj , (17)

where (yj , tj) ranges over all space-time evaluations and the coe�cients. As in the spatial case,
we enforce the interpolation conditions χ(y, t) = v(y, t) at all y ∈ Y and t ∈ {t1, . . . , tT }, thereby
obtaining a block linear system of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ ψ1,1 Φ ψ1,2 ⋯ Φ ψ1,T

Φ ψ2,1 Φ ψ2,2 ⋯ Φ ψ2,T

⋮ ⋮ ⋱ ⋮
Φ ψT,1 Φ ψT,2 ⋯ Φ ψT,T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

⋮
bT

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

⋮
vT

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where ψij = ψ(ti, tj), Φ is the Gramian matrix obtained by evaluating the matrix-valued spatial
kernel Φ on Y , and the superscripts on b and v denote the timestep. Since Φ and ψ are both positive-
de�nite kernels and the spatial and temporal sampling locations are distinct, the kernel interpolant
χ is uniquely determined [82, 86]. It is important to note that Φ here can be replaced by Φπ or Φπ,η,
as needed. Much as in the case of (8), (18) requires the use of e�cient linear algebra to contend with
the d + 1 dimensionality of the problem. We describe these techniques in Section 3.4.2.

3.2.5 Approximate kernel Fekete points

The global kernel interpolation performed throughout this work in (7) and (17) is susceptible
to the Runge phenomenon, a well known instability a�ecting global interpolation of smooth target
functions [140, 141]. This issue has been observed both for global polynomial interpolation and for
RBF methods [142, 143]. Since the velocity �elds considered here are smooth and de�ned on bounded
domains, naive global kernel interpolation on equally-spaced or quasi-uniform points may exhibit
large oscillations near the domain boundary.

Most work in the literature addresses this di�culty through careful choice of interpolation points
or bases. Approaches include boundary-clustered points [144], spatially varying shape parameters
in RBF interpolation [143], and extension-based techniques such as RBF extension [145], which are
closely related to Fourier extension methods [146, 147]. Within the RBF literature, greedy point
selection algorithms [148, 149] and inducing-point strategies [150] are commonly employed to identify
subsets of points that give improved stability and approximation accuracy.

A complementary and well-established strategy in polynomial interpolation is the use of Fekete
points [151, 152]. These points are de�ned as the maximizers of the absolute value of the
determinant of the polynomial Vandermonde matrix [153], a property that is closely connected to
favorable conditioning and reduced Lebesgue constants, and hence improved interpolation stability.
However, exact Fekete points are expensive to compute and are known analytically only in very
restricted settings. In practice, approximate Fekete points are typically computed via rank-revealing,
column-pivoted QR factorizations of Vandermonde matrices [151, 154]. Recent work has begun
extending these ideas to kernel Gramian matrices in the univariate setting [155]. Motivated by
these developments, we adopt an analogous approach for kernel-based interpolation by computing
approximate Fekete points directly from our kernel Gramian matrices. We describe this approach
below.

Let Y be the set of candidate points from which we wish to pick approximate Fekete points;
typically, this is the set of all data locations available to us. Let ϕ be a scalar-valued positive-de�nite
kernel and let Aij = ϕ(yi, yj) be its associated Gramian matrix on Y . Since A is positive-de�nite, it
admits the Cholesky factorization A = LLT where L is lower triangular. The columns of L can be
interpreted as a set of feature vectors induced by the kernel ϕ at the points Y . We seek to �nd a
subset of points whose feature vectors are maximally linearly independent. To this end, we apply a
rank revealing QR factorization with column pivoting to L

LP = QR, (19)

where Q has orthogonal columns, R is upper triangular, and P is a permutation matrix containing
column pivot indices. The column pivoting orders the columns of L according to their contribution to
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the numerical rank. We take the points corresponding to the �rst m entries of P as the approximate

kernel Fekete points. These points are used by the property-preserving kernel in all experiments.
Example sets of approximate Fekete points are shown in the appendix in Figure 14. In cases where
Ωa = Ωv, the same set of points is used for both input and output �elds; n =m.

3.3 The operator kernel interpolant

Once the interpolation coe�cients in (7) or (17) are obtained, the next step in our framework is
to treat those coe�cients as a function of the input functions and �t them in turn (via the object
f̃ mentioned previously); this enables the prediction of new coe�cients on generalization (when an
unseen input function is supplied). We now describe the construction of f̃ , which is an operator-
valued kernel interpolant. Let a ∶ Rd → Rp be an input function and X = {x1, . . . , xn} ⊂ Ωa ⊂ Rd the
set of points on its domain where it is sampled; we denote the block vector of evaluations of a

at X by a = [a1, . . . ,ap]T ∈ Rnp. The operator-valued kernel interpolant (or simply operator kernel
interpolant) requires a matrix-valued positive-de�nite kernel Λ ∶ Rnp ×Rnp → Rmd×md that is capable
of consuming these Rnp block vectors as arguments and outputting a matrix in Rmd×md. Equipped
with this matrix-valued kernel, we may now write the operator kernel interpolant f̃ as

f̃(a) =
N

∑
i=1

Λ(a,ai) ci, (20)

In order to reduce the dimensionality of the associated interpolation problem, we �rst select Λ to be
a diagonal kernel of the form Λ = λI, where I is the md ×md identity matrix and λ ∶ Rnp ×Rnp → R
is some scalar-valued positive de�nite kernel. This choice decouples all solves for the components
of the coe�cients ci. After making this choice, we enforce the interpolation conditions f̃(ai) = bi,
where i = 1, . . . ,N indexes training functions and bi is the coe�cient vector associated with the
property-preserving interpolant χ for the i-th output function. This results in the following linear
system with N right-hand sides and the shared Gramian of λ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1,1 λ1,2 . . . λ1,N
λ2,1 λ2,2 . . . λ2,N
⋮ ⋮ ⋱ ⋮

λN,1 λN,2 . . . λN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11 c21 . . . cmd
1

c12 c22 . . . cmd
2

⋮ ⋮ ⋱ ⋮
c1N c2N . . . cmd

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b11 b21 . . . bmd
1

b12 b22 . . . bmd
2

⋮ ⋮ ⋱ ⋮
b1N b2N . . . bmd

N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

(21)

The system (21) has a unique solution if the input function sample vectors are all distinct [56, 82, 86].
To account for possible irregularities in the input function samples, we include a ridge parameter θ
on the Gramian's diagonal for regularization [56, 156]. This ensures positive-de�niteness and serves
to control the magnitude of the columns of C. This results in the following linear system:

(Kϵ + θI) cj = bj , j = 1, . . . ,md, (22)

where cj are the columns of C, bj are the columns of B, ϵ is the shape parameter of the operator
kernel, and I is the N ×N identity matrix.

Generalization

Analogous to the evaluation of the property-preserving kernel interpolant in (9), f̃ can be
evaluated at an unseen test function a⋆ to obtain the property-preserving kernel interpolation
coe�cients for the corresponding output function v⋆. Denote by K∗ the 1×N evaluation matrix for
the kernel λ so that (K∗)1j = λ(a∗,aj), j = 1, . . . ,N . Then,

f̃(a∗) =K∗C. (23)

For N∗ test functions, K∗ is simply an N∗ ×N matrix. However, note that f̃(a∗) merely returns an
approximation to the output coe�cient vector b∗ (in a property-preserving kernel expansion) to the
output function v∗. Samples of the output function v∗ are in turn obtained by (9).
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3.3.1 Operator-valued Gaussian processes for uncertainty quanti�cation

The operator kernel interpolant map also provides us with a natural method for estimating
function-level uncertainty. Uncertainty quanti�cation involves calculating the statistical uncertainty
associated with a surrogate model's prediction [157]. The applications of this �eld vary widely, such
as aerodynamic shape design [158], materials science [159], inverse problems [160, 161], and seismic
wave propagation [160]. In particular, kernel interpolants (regularized or otherwise) automatically
form the mean function for a Gaussian process (GP); alternatively, GPs may be thought of as a
straightforward probabilistic generalization of kernel interpolation. GP methods have been used to
approximate uncertainty in machine learning model predictions [162, 163]. GPs have also been used
in kernel based methods [57, 164�166].

While not a major focus of this work, we brie�y describe how to leverage the operator kernel
interpolant f̃ to quantify uncertainty. The GP naturally induced by the operator kernel is given by
ξ ∼ N(b̂,Λ), where b̂ is the prior mean and Λ the prior covariance kernel of the GP (and also the
kernel of the interpolant (20). Conditioning the GP on the training observations yields a posterior
mean and posterior covariance kernel Σ⋆ given by

sb = Λ⋆(Λ + θI)−1btrain, (24)

Σ⋆ = Λ⋆⋆ −Λ⋆(Λ + θI)−1(Λ⋆)T , (25)

where btrain =
⎡⎢⎢⎢⎢⎢⎣

b1

⋮
bN

⎤⎥⎥⎥⎥⎥⎦
∈ RNmd, Λ is the Nmd × Nmd matrix denoting the prior covariance on the

training dataset, Λ⋆ is the md ×Nmd cross-covariance matrix, and Λ⋆⋆ = Λ(a⋆,a⋆) is the md ×md
matrix denoting the prior covariance on the test dataset. The uncertainty in the predicted output
�eld can be obtained by perturbing the posterior mean using the Cholesky factorization of the
posterior covariance. Speci�cally, if Σ⋆ = LLT , then samples from the predictive distribution within
one standard deviation are given by

b̃⋆ = sb ±Lz, z ∼ N(0, I), (26)

where z ∈ Rmd. The perturbed coe�cient vector b̃⋆ is then used in the property-preserving kernel
interpolant in (8) to obtain a sample velocity �eld from the posterior distribution (via (9)). Hence,
our method provides a framework for property-preserving uncertainty quanti�cation. While we leave
a detailed exploration of the GP associated with our operator kernel interpolant for future work, we
present preliminary results in Section 1.3.1 for a turbulent �ow problem in 3D.

3.4 Implementation and training details

We now describe important implementation details for the two kernel interpolants used in our
framework.

3.4.1 Kernels, shape parameters, and nuggets

Kernels

We use the Euclidean distance metric in all kernel arguments; ϕ(x, y) = ϕ(∥x − y∥2), thereby
making all non-periodic kernels radial. In this special case, the divergence-free kernel can be written
as Φ(x, y) = (−∆I +∇∇T ) ϕ(∥x − y∥2) where ∆ and ∇ are the Rd Laplacian and gradient operators
respectively acting on y, and I is a d × d identity matrix. This does not work in the periodic case
because the transformation h (see (13)) breaks the radial characteristic of ϕ.

We tested three di�erent choices of radial kernels (RBFs): (i) the Gaussian kernel, (ii) the
compactly supported C4 Wendland kernel [167], and (iii) the C4 Matérn kernel [168]. The C4 Matérn
kernel outperformed the other two kernels consistently across all experiments (the Gaussian was more
ill-conditioned and the Wendland kernel was less accurate when supports were small). We therefore
report results using only this kernel. It is given by ϕϵ(r) = e−(rϵ)(3 + 3rϵ + (rϵ)2), where r = ∥x− y∥2.
Speci�cally, the kernels ϕ, ψ, and λ are all chosen to be the C4 Matérn kernel. In Section 3.5,
we present universal approximation results and theoretical convergence rates for the Matérn kernel.
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Shape parameters

Like most RBFs, the Matérn kernel comes equipped with a shape parameter ϵ which enormously
a�ects accuracy and conditioning of the corresponding kernel interpolants; in our case, we have
three di�erent shape parameters that must be selected (one corresponding to ϕ, ψ, and λ each).
We empirically found that selecting these shape parameters to be as small as possible produced
the most accurate generalization results; this corresponds to the so-called �at limit of the kernel.
We hypothesize that this was because our training function �elds output by the SU2 solver (a
�nite-volume solver) are naturally consistent with a �nite-order Sobolev regularity class [169]. For
�xed smoothness ν, a Matérn kernel induces a Sobolev (Bessel-potential) native space, and as the
shape parameter goes to zero, its reproducing kernel Hilbert space (RKHS) norm approaches the
homogeneous 9Hm seminorm (m = ν+ d

2
), so the interpolant converges to the polyharmonic (Duchon)

spline that minimizes that Sobolev semi-norm among all interpolants [170, 171]; thus, using a near-
�at Matérn kernel potentially aligns the operator kernel interpolant with the natural energy class of
the �nite-volume data.

Algorithms for selecting shape parameters have been studied extensively in the literature. One
class of methods depends on the target functions, such as the leave-one-out cross-validation (LOOCV)
method [172, 173], which is closely related to Rippa's algorithm [172, 174, 175]. Another class of
methods involves optimizing the shape parameter for a target condition number [176�180]. For
convenience, we leverage the latter approach. Speci�cally, given a kernel Gramian Aϵ and a target
condition number δ, we �nd the root of the function s(ϵ) = κ(Aϵ) − δ, where κ is 1-norm condition
number of Aϵ; the (reciprocal) 1-norm condition number is much easier to estimate and therefore
more computationally inexpensive than the 2-norm condition number. More speci�cally, we �nd
shape parameters by root�nding using the popular Brent�Dekker method [181, 182] (as implemented
in Matlab's fzero function). We consistently selected a target condition number of 1012 for the
property-preserving kernel Gramian (or the product kernel in the spacetime case) and 1015 for the
operator kernel Gramian; we were able to use a larger target condition number for the latter as it
also included a ridge regularization term (aka nugget).

Nuggets

Finally, following standard practice in RBF interpolation of noisy data [162, 183], we also
regularized the operator kernel by adding a small �nugget�, commonly known as the ridge parameter,
θ to the diagonal of the Gramian in (22). Interestingly, we found that adding a ridge parameter to
the property-preserving kernel degraded the overall generalization accuracy, whereas it was crucial
for the operator kernel. We show results on the e�ect of varying θ in Appendix C and discuss these
results in Section 2.

3.4.2 E�cient Linear Algebra

Each interpolant carries its own implementation challenges: the property-preserving interpolant
brought with it computational cost issues due to the O(d3m3) cost of the naive linear solve, especially
for the large m explored in this work; the operator interpolant brings challenges in terms of GPU
memory, and the inability to store all N training functions on GPU memory for large N . We now
describe our specialized implementation techniques.

Property-preserving kernel interpolant

We now describe our approach to overcome the O(d3m3) cost for �nding the property-preserving
interpolation coe�cients, a necessary preprocessing step to obtaining the training data for the
operator kernel interpolant. Our approach is centered around careful and recursive use of the Schur
complement of the block matrixΦ (the property-preserving kernel Gramian). In the discussion below,
we will focus on Φ; the same techniques were used for the other variants.

We �rst consider the case when d = 2. Here, Φ is a 2 × 2 matrix-valued kernel. When evaluated
at m points, its Gramian is a matrix of size 2m × 2m. The Gramian naturally separates into
four blocks, but each block acts on both vector components of the coe�cients; recall that each
component of the coe�cients corresponds to a di�erent spatial dimension (in our case coordinate
axes). Following Fuselier et al. [97], we �rst reorder the individual blocks spatially ; evaluations for
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each spatial component are grouped together and the resulting Gramian has the form

Φ = [A11 A12

A21 A22
] , Aij ∈ Rm×m, (27)

where, for notational convenience, Aij is the (i, j) block in (11) evaluated at all m points. Then, the
block linear system for interpolation is given by

[A11 A12

A21 A22
] [b

1

b2] = [
v1

v2] . (28)

For the symmetric kernels ϕ used in this work, the mixed partial derivatives commute w.r.t. x and
y. As a result, Φ exhibits symmetry in its block structure and A12 = A21. This symmetry allows us
to store only the upper (or lower) triangular blocks. Rather than forming and factorizing the full
2m × 2m matrix, we apply a Schur complement reduction with respect to A22. De�ning

S = A11 −A12A
−1
22A12, (29)

the coe�cients are obtained with the following two steps:

b1 = S−1 (v1 −A12A
−1
22v

2) , (30)

b2 = A−122 (v2 −A12b
1) . (31)

This avoids explicitly forming and storing the full Gramian and reduces the memory usage from
O(m2d2) to O(m2). Additionally, since A22 is a positive-de�nite matrix, we apply a Cholesky
factorization A22 = LLT , and then perform forward and backward substitution solves using the
lower triangular matrix L in (29), (30), and (31). This reduces the overall runtime complexity from
O(m3d3) to O(m3).

In d = 3, after a similar reorder by spatial coordinates, the symmetric block linear system takes
the form

⎡⎢⎢⎢⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

b1

b2

b3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

v1

v2

v3

⎤⎥⎥⎥⎥⎥⎦
, (32)

where Aij refers to the (i, j) block in (12), Aij = Aji, and the horizontal and vertical bars indicate
a partition of the Gramian into a 2 × 2 system. We apply the same Schur complement strategy
recursively. First, we eliminate b3 via the Schur complement of Φ33, giving the following 2× 2 block
system

[Ã11 Ã12

Ã21 Ã22
] [b

1

b2] = [
ṽ1

ṽ2] , (33)

where

Ã11 = A11 −A13A
−1
33A13, Ã12 = A12 −A13A

−1
33A23,

Ã22 = A22 −A23A
−1
33A23, ṽ

1 = v1 −A13A
−1
33v

3,

ṽ2 = v2−A23A
−1
33v

3.

(33) is then solved using the same Schur complement procedure described previously, after which b3

is recovered as

b3 = A−133 (v3 −A13b
1 −A23b

2) . (34)

We once again obtain an O(m3) cost for this recursive solution and require O(m2) storage. It is also
likely that these systems are better conditioned in practice than the original full Gramian. We also
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leverage a version of these algorithms at inference/generalization time: we only store blocks of the
evaluation matrix Φ∗ and apply them component-wise to the predicted coe�cient (block) vectors.

Extension to spacetime kernels: In the spacetime experiment in Section 1.2, the output
consists of velocity �elds at four discrete timesteps, resulting in (18) having a 4 × 4 block Gramian.
We recursively apply the same Schur complement strategy to reduce the system to �rst a 3 × 3
system, then a 2 × 2 system in turn.

Operator kernel interpolant

The main challenge with the operator kernel interpolant was in forming theN×N Gramian matrix
Kij = λ(ai,aj) where a ∈ Rnp. Much of our computation is done with the JAX library [184] in Python
which provides a useful vectorizable map, vmap, that can be customized to execute instructions in
parallel on the GPU. Fortunately, forming the entries of K is an embarrassingly parallelizable task.
However, it is not possible to use vmap to form the entire matrix in one call due to the cost of
storing all the input functions in memory simultaneously, even on a moderately powerful desktop
GPU (NVIDIA RTX 4080); vmap also appears to incur a signi�cant memory overhead of its own,
as do JAX's just-in-time (JIT) compilation features. In our experiments, n and N can each be as
large as 10,000. Consequently, we required an e�cient streaming method to compute the entries of
K. We used Algorithm 2 to form B ×B blocks of K in batches.

Algorithm 2 Streaming construction of the operator kernel Gramian

Require: Evaluations of the input functions {ai}Ni=1, operator kernel λ, and batch size B.
1: Initialize K = 0N×N
2: P = ⌈N/B⌉
3: for i = 1 to P do
4: Istart ← iB
5: Iend ←min((i + 1)B, N)
6: for j = 1 to P do
7: Jstart ← jB
8: Jend ←min((j + 1)B, N)
9: KIstart∶Iend,Jstart∶Jend = λ (aIstart∶Iend ,aJstart∶Jend) ▷ vmap call here.
10: end for
11: end for

3.4.3 Training details

We now describe our training method. Though the computation of our interpolation coe�cients
only requires linear solves, we also compute the shape parameters as described in Section 3.4.1.

Preprocessing

Before we begin training, we �rst preprocess our inputs to enable more intuitive and comparable
selection of the shape parameter and the ridge parameter across all experiments; a discussion of
the magnitude of the ridge parameter θ is provided in Appendix C. Speci�cally, we normalized all
spatial functions to each have zero mean and unit standard deviation. Recalling that {ai(x)}N+Ntest

i=1
are the input functions, let µ(x) be the estimated spatial mean and estimated ζ(x) be the spatial
standard deviation computed from the training set at the set of points X. Both training and test
input functions are then normalized as follows: ai(x)−µ(x)

ζ(x) , i = 1, . . . ,N +Ntest.
We also conduct another critical preprocessing step: the property-preserving kernel interpolants

to the N training output functions must be precomputed, and their coe�cients must be stored
as they form the right-hand side to the operator kernel interpolant in (22). We conducted this
preprocessing step on the CPU for all experiments simply due to the memory constraints of storing
the resulting Nmd coe�cients; while a streaming approach is possible here also, we did not explore
such an approach here as this was simply viewed as a preprocessing step.

Two-step training

We use a simple two-step training procedure. First, we optimize for the operator kernel's shape
parameter as discussed in Section 3.4.1: we used MATLAB's fzero function on the CPU to �nd the
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shape parameter for the target condition number of 1015 as it proved to be signi�cantly faster than
Python's root�nding routines; note that fzero (the Brent-Dekker method) is iterative and gradient-
free. We then use this shape parameter to reform the Gramian K and solve the linear system (22)
on the GPU via the JAX Python library. We measure the total training time as the time taken for
each of these steps. We measure total inference time for our method as the sum of the times taken
to form the evaluation matrix K⋆, predict the output coe�cients, and reconstruct the velocity �elds
from those coe�cients.

3.5 Approximation Theorems and Convergence Rates

We now present a series of approximation theorems governing the existence and convergence
rates of our interpolants. The corollaries establish the same results for cases where the operator
kernel interpolant includes ridge terms during training (which is our setting). In all cases, we
specialize for the C4 Matérn kernel, which has a smoothness parameter ν = 9/2.

The �rst theorem establishes universal approximation of output coe�cients via Matérn kernels;
we show that they are dense in the space of continuous functions de�ned over the vector space whose
dimension is given by the length of the coe�cient vector.
Theorem 1 (Universal Approximation) Let X ⊂ Rn be compact, �x ν > 0, let kν(x,x′) ∶= κν(x − x′)
be the translation-invariant Matérn kernel on Rn, let B ∈ RM×M be symmetric positive de�nite, and

de�ne the separable matrix-valued kernel KX(x,x′) ∶= kν(x,x′)B with associated vector-valued RKHS

HKX
⊂ C(X;RM ). Then HKX

is dense in C(X;RM ) with respect to the uniform norm, i.e.

HKX

∥⋅∥
L∞(X;RM ) = C(X;RM ).

Proof Since kν is translation-invariant with spectral density strictly positive on Rn, it is c0-universal, hence
its RKHS Hkν

is dense in C(X) for every compact X ⊂ Rn [185]. For B ≻ 0 and KX(x,x′) = kν(x,x′)B,
the associated RKHS satis�es (as a set) HKX

= {B1/2g ∶ g ∈ Hkν
(X)M } with norm equivalence depending

only on B [186]. Let f ∈ C(X;RM ) and set g ∶= B−1/2f ∈ C(X;RM ); by density of Hkν
(X) in C(X) applied

componentwise, there exists gm ∈ Hkν
(X)M with ∥gm − g∥L∞(X;RM ) → 0. Then fm ∶= B1/2gm ∈ HKX

and
∥fm − f∥L∞(X;RM ) → 0, proving density. □

The next theorem describes worst-case convergence rates for recovering output coe�cients. This
theorem is highly pessimistic (by no means o�ering tight upper bounds) and uses the sample
dimension of the input function to determine the convergence rate; in practice the true rate is
determined by low-rank structure associated with both the input functions and the operator.
Theorem 2 (Coe�cient interpolation rate for vector-valued C4 Matérn kernels in L2(X)) Let X ⊂ Rn

be a bounded Lipschitz domain, let kν denote the scalar Matérn kernel of smoothness ν, let B ∈ RM×M be

symmetric positive de�nite, de�ne the separable matrix-valued kernel KX(x,x′) ∶= kν(x,x′)B with associated

RKHS HKX
, and let XN ⊂ X be quasi-uniform with �ll distance hX ∶= supx∈X minxi∈XN

∥x − xi∥. If c� ∈
Hν+n/2(X;RM ) and ĉN ∈ HKX

denotes the KX -interpolant of c� on XN , then

∥ĉN − c�∥L2(X) ≤ CXh
ν+n/2
X ∥c�∥Hν+n/2(X).

If XN is quasi-uniform, then hX ≍ N−1/n and

∥ĉN − c�∥L2(X) ≤ C̃XN
−(ν+n/2)/n∥c�∥Hν+n/2(X).

Proof For separable kernels KX(x,x′) = kν(x,x′)B with B ≻ 0, the associated vector-valued RKHS HKX

is isomorphic (with norm equivalence constants depending only on B) to the product space Hkν
(X)M , and

under this identi�cation the KX -interpolant corresponds to componentwise scalar kν -interpolation [186].

Since Hkν
(X) ≃Hν+n/2(X) [82, Thm. 10.47], the scalar Sobolev-type estimate in L2(X) implies

∥IXN
g − g∥L2(X) ≤ C h

ν+n/2
X ∥g∥Hν+n/2(X)

for g ∈Hν+n/2(X), and applying this componentwise yields

∥ĉN − c�∥L2(X) ≤ CX h
ν+n/2
X ∥c�∥Hν+n/2(X).

The quasi-uniform rate follows from hX ≍ N−1/n. □

The following corollary extends this pessimistic worst-case convergence rate to the case where
ridge regularization (a nugget) is used in the operator kernel interpolant.
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Corollary 3 (Ridge perturbation of coe�cient interpolation in L2(X)) Under the assumptions of Theorem 2,
let ĉN,λ ∈ HKX

denote the kernel ridge regression estimator de�ned by

ĉN,λ ∈ arg min
f∈HKX

1

N

N

∑
i=1
∥f(xi) − c�(xi)∥22 + λ∥f∥2HKX

,

and let ĉN denote the KX -interpolant of c� on XN . Then

∥ĉN,λ − c�∥L2(X) ≤ CXh
ν+n/2
X ∥c�∥Hν+n/2(X) + ∥ĉN,λ − ĉN ∥L2(X).

If XN is quasi-uniform, then the �rst term is O(N−(ν+n/2)/n).

Proof Add and subtract ĉN and apply the triangle inequality, then use Theorem 2. □

Next, we prove a theorem regarding convergence of the operator learning procedure to target
functions on generalization. The proof takes into account the error in predicting the coe�cients and
also error estimates for divergence-free approximation when using exact coe�cients; we omit the
proofs for the periodic and turbulent cases.
Theorem 4 (Divergence-free Matérn reconstruction error in L2(Ω)) Let Ω ⊂ Rd be a bounded Lipschitz

domain, let ϕν denote the scalar Matérn kernel on Rd, de�ne the divergence-free matrix-valued kernel

Φdiv(x) ∶= (−∆I + ∇∇⊺)ϕν(x), �x quasi-uniform sites YM ⊂ Ω with �ll distance hY ∶= supy∈Ωminyj∈YM
∥y −

yj∥, �x vectors bj ∈ Rd, de�ne basis functions ψj(x) ∶= Φdiv(x−yj)bj and reconstruction operator (Rc)(x) ∶=
∑M

j=1 cjψj(x), and de�ne the L2(Ω) mass matrix Tij ∶= ⟨ψi, ψj⟩L2(Ω). If v ∈Hν+d/2(Ω;Rd) is divergence-free
and vM = Rc⋆ denotes its divergence-free Matérn interpolant on YM , then for any ĉ ∈ RM ,

∥v −Rĉ∥L2(Ω) ≤ CY h
ν+d/2
Y ∥v∥Hν+d/2(Ω) +

√
λmax(T)∥ĉ − c⋆∥2.

If YM is quasi-uniform, then hY ≍M−1/d and

∥v −Rĉ∥L2(Ω) ≤ C̃YM
−(ν+d/2)/d +

√
λmax(T)∥ĉ − c⋆∥2.

Proof The divergence-free construction admits Sobolev-type approximation rates [93], yielding

∥v − vM ∥L2(Ω) ≤ CY h
ν+d/2
Y ∥v∥Hν+d/2(Ω).

Moreover,
∥R(c⋆ − ĉ)∥2L2(Ω) = (c

⋆ − ĉ)⊺T(c⋆ − ĉ) ≤ λmax(T) ∥ĉ − c⋆∥22.
By the triangle inequality,

∥v −Rĉ∥L2(Ω) = ∥(v − vM ) +R(c
⋆ − ĉ)∥L2(Ω) ≤ ∥v − vM ∥L2(Ω) + ∥R(c

⋆ − ĉ)∥L2(Ω),

which yields the result. □

The following corollary modi�es the error estimate from Theorem 6 to account for the error
introduced by ridge regression.
Corollary 5 (Ridge operator bound in L2(X;L2(Ω))) Under the assumptions of Theorem 4, replace ĉN
by the kernel ridge regression estimator ĉN,λ de�ned in the previous corollary and de�ne ĜN,M,λ(x) ∶=
R(ĉN,λ(x)). Then

∥ĜN,M,λ − G∥L2(X;L2(Ω)) ≤ C̃YM
−(ν+d/2)/d +

√
λmax(T)∥ĉN,λ − c�∥L2(X).

In particular,

∥ĜN,M,λ − G∥L2(X;L2(Ω)) ≤ C̃YM
−(ν+d/2)/d + C̃X

√
λmax(T)N−(ν+n/2)/n +

√
λmax(T) ∥ĉN,λ − ĉN ∥L2(X).

Proof Repeat the proof of Theorem 6 with ĉN replaced by ĉN,λ, then substitute the previous corollary. □

Theorem 6 (below) now combines the results of the previous theorems in order to bound the
operator error. Once again, this is a pessimistic (not sharp) worst-case error estimate, working in
the sampling dimension of the input functions rather than the unknown intrinsic dimension. In
general, operator learning techniques (kernel or otherwise) appear to converge faster. Nevertheless,
Theorem 6 gives us a baseline result that we hope to improve upon.
Theorem 6 (Operator error in L2(X;L2(Ω))) Under the assumptions of the previous two theorems, if

v(⋅;x) ∈ Hν+d/2(Ω;Rd) satis�es ∥v∥L∞(X;Hν+d/2(Ω)) ∶= supx∈X ∥v(⋅;x)∥Hν+d/2(Ω) < ∞, if c�(x) is de�ned by

vM (⋅;x) = R(c�(x)) where vM (⋅;x) denotes the divergence-free Matérn interpolant of v(⋅;x) on YM , and if

ĉN denotes the KX -interpolant of c� on XN , then de�ning ĜN,M (x) ∶= R(ĉN (x)) and G(x) ∶= v(⋅;x) yields

∥ĜN,M − G∥L2(X;L2(Ω)) ≤ C̃YM
−(ν+d/2)/d + C̃X

√
λmax(T)N−(ν+n/2)/n.
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Proof For each x ∈ X, apply the divergence-free reconstruction estimate with v = v(⋅;x), c⋆ = c�(x), and
ĉ = ĉN (x) to obtain

∥v(⋅;x) −R(ĉN (x))∥L2(Ω) ≤ CY h
ν+d/2
Y ∥v(⋅;x)∥Hν+d/2(Ω) +

√
λmax(T) ∥ĉN (x) − c�(x)∥2.

Taking the L2(X) norm in x and using ∥v(⋅; ⋅)∥L∞(X;Hν+d/2(Ω)) < ∞ gives

∥ĜN,M − G∥L2(X;L2(Ω)) ≤ CY h
ν+d/2
Y ∣X ∣1/2 ∥v∥L∞(X;Hν+d/2(Ω)) +

√
λmax(T) ∥ĉN − c�∥L2(X).

Substituting the coe�cient estimate from Theorem 2 and hY ≍ M−1/d yields the claim (absorbing

∣X ∣1/2∥v∥L∞(X;Hν+d/2) into C̃Y ). □

We now present two theorems that clearly show error estimates in terms of the unknown intrinsic
dimension. The result shows the same algebraic decay in the �ll distance, albeit when that �ll distance
is measured within that intrinsic dimension. If the intrinsic dimension r << n (in the notation of this
section), then this implies a much faster rate of approximation in practice. The �rst theorem is for
recovering coe�cients.
Theorem 7 (Intrinsic-dimension variant of coe�cient interpolation in L2(Xeff)) Let X ⊂ Rn be a bounded

Lipschitz domain, let kν be the scalar Matérn kernel of smoothness ν, let B ∈ RM×M be symmetric positive

de�nite, de�ne KX(x,x′) ∶= kν(x,x′)B with RKHS HKX
, and assume there exist an integer r ≪ n, a

bounded Lipschitz domain X̃ ⊂ Rr, and a bi-Lipschitz bijection Φ ∶ X̃ → Xeff ⊂ X such that XN = Φ(X̃N )
for a quasi-uniform set X̃N ⊂ X̃ with �ll distance hX̃ ∶= supξ∈X̃ minξi∈X̃N

∥ξ − ξi∥. If c� factors through Φ as

c�(x) = c̃(Φ−1(x)) for x ∈ Xeff with c̃ ∈ Hν+r/2(X̃;RM ) and ĉN denotes the KX -interpolant of c� on XN ,

then

∥ĉN − c�∥L2(Xeff) ≤ CΦ h
ν+r/2
X̃

∥c̃∥Hν+r/2(X̃).

If X̃N is quasi-uniform, then hX̃ ≍ N
−1/r and

∥ĉN − c�∥L2(Xeff) ≤ C̃ΦN
−(ν+r/2)/r ∥c̃∥Hν+r/2(X̃).

Proof De�ne c̃ ∶ X̃ → RM by c̃(ξ) ∶= c�(Φ(ξ)) and de�ne X̃N ∶= Φ−1(XN ). Since Φ is bi-Lipschitz, the

pullback identi�es L2(Xeff) with L2(X̃) up to a constant depending only on Φ, and likewise Hν+r/2(Xeff)
with Hν+r/2(X̃) up to a constant depending only on Φ. Moreover, because XN = Φ(X̃N ), theKX -interpolant

of c� restricted to Xeff corresponds, under pullback by Φ, to Matérn interpolation of c̃ on the r-dimensional
set X̃N . Applying the L2 Matérn/Sobolev interpolation estimate on X̃ yields

∥ĉN − c�∥L2(Xeff) ≤ CΦ h
ν+r/2
X̃

∥c̃∥Hν+r/2(X̃).

If X̃N is quasi-uniform then hX̃ ≍ N
−1/r, giving the stated algebraic rate. □

Finally, our last theorem establishes operator convergence rates in terms of the unknown intrinsic
dimension r << n.
Theorem 8 (Intrinsic-dimension operator bound in L2(Xeff ;L

2(Ω))) Under the assumptions of the

divergence-free reconstruction theorem and the intrinsic-dimension coe�cient theorem, if c�(x) is de�ned by

vM (⋅;x) = R(c�(x)) where vM (⋅;x) denotes the divergence-free Matérn interpolant of v(⋅;x) on YM , then

de�ning ĜN,M (x) ∶= R(ĉN (x)) and G(x) ∶= v(⋅;x) yields

∥ĜN,M − G∥L2(Xeff ;L2(Ω)) ≤ C̃YM
−(ν+d/2)/d + C̃Φ

√
λmax(T)N−(ν+r/2)/r.

Proof For each x ∈Xeff , apply the divergence-free reconstruction theorem with v = v(⋅;x), c⋆ = c�(x) (de�ned
by vM (⋅;x) = R(c�(x))), and ĉ = ĉN (x) to obtain

∥v(⋅;x) −R(ĉN (x))∥L2(Ω) ≤ CY h
ν+d/2
Y ∥v(⋅;x)∥Hν+d/2(Ω) +

√
λmax(T) ∥ĉN (x) − c�(x)∥2.

Take the L2(Xeff) norm in x and use ∥v∥L∞(Xeff ;Hν+d/2(Ω)) < ∞ to get

∥ĜN,M − G∥L2(Xeff ;L2(Ω)) ≤ CY h
ν+d/2
Y ∣Xeff ∣1/2 ∥v∥L∞(Xeff ;Hν+d/2(Ω)) +

√
λmax(T) ∥ĉN − c�∥L2(Xeff).

Substitute the intrinsic-dimension coe�cient estimate from Theorem 7 and hY ≍ M−1/d, absorbing

∣Xeff ∣1/2∥v∥L∞(Xeff ;Hν+d/2) into C̃Y . □
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A Problem con�gurations

In Table 2, we present detailed con�gurations for all our experiments, including the domain, the
�ow regime, the forcing term, the initial and boundary conditions, the �nal time and time-step used
in SU2, and the speci�c operator being learned. In cases where the �ow was turbulent, we used the
SST turbulence model in conjunction with RANS.

Table 2: Problem con�gurations; �ow regime, domain, forcing term (f), initial and boundary conditions (IC
and BC), time domain, and the operator of interest. Re stands for the Reynolds number and Ra for the Rayleigh
number.

# Problem Domain Flow regime f IC BC Time Operator

1)

2D Flow Past [0,20]×[0,14] Laminar � u given u given at T = 10 G ∶ u(x,0)→u(y,10)

a Cylinder No shedding top/bottom/inlet ∆t = 10−3

Re∈[25,64] No-slip cylinder

Vortex shedding outlet, p = 0

Re∈[112,199]

2)
2D Lid�Driven [0,1]2 Laminar � u given utop given T = 5 G ∶ u(x,0)→u(y,5)

Cavity Flow ub = 0, else ∆t = 10−3

3)

2D Backward [0,15] Laminar � uinlet = νx2(0.5 − x2) uinlet given T = 5 G ∶ u(x,0)→u(y,5)

Facing Step ×[−0.5,0.5] Re∈[28,900] u = 0, else u = 0 at ∆t = 10−3

top, bottom, step

outlet, p = 0

4)

2D Buoyancy�Driven [0,1]2 Laminar −g u = 0 No-slip walls T = 5 G ∶ T(x,0)→u(y,5)

Cavity Flow Ra= 106 Tleft = T1 ∆t = 10−3

Tright = T2

T = 288.15K, else

5)

2D Taylor�Green [0,2π]2 Laminar � u = uleft = uright T = 1 G ∶ u(x,0)→u(y,1)

Vortices (A sinx1 cosx2, utop = ubottom

(spatial) A cosx1 sinx2)e−2νt

6)

2D Taylor�Green [0,2π]2 Laminar � u = uleft = uright T = [0.7,0.8 G ∶ u(x,0)→u(y, T )

Vortices (A sinx1 cosx2, utop = ubottom 0.9,1]

(spacetime) A cosx1 sinx2)e−2νt

7)

2D Merging [0,2π]2 Laminar � u given uleft = uright T = 0.4 G ∶ ω(x,0)→u(y,0.4)

Vortices utop = ubottom ∆t = 10−3

ω (vorticity) given

8)

3D Species See Figure 4 Turbulent � uinlet, given uinlet given T = 0.5 G ∶ uinlet→u(y,0.5)

Transport Re∈[105,106] u = 0, else no-slip ∆t = 0.005

inner wall,

outer wall,

& blades

outlet, p = 0

9)

3D Flow [−7,10]×[−7,7] Turbulent � uinlet, given uinlet given T = 1 G ∶ τ→u(y,1)

Past an ×[0,3] Re = 3 × 106 u = 0, else ufront = uback ∆t = 10−2

Airfoil No-slip airfoil

τ denotes outlet, p = 0

the airfoil shape

B Additional results

We present additional experimental results in this section on four classic incompressible �uid �ow
problems (including a temperature-driven �ow) and a challenging one involving merging vortices.

36



B.1 2D Taylor�Green vortices
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Fig. 6: The 2D laminar Taylor�Green vortices problem for the purely spatial operator map. The
output functions are snapshots of the velocity at time T = 1. (A) and (B) show the test relative ℓ2
errors and training runtimes as functions of N for the operator map from the initial velocity to the
�nal velocity. (C) and (D) show the same results for the operator map from the �ow parameters to
the �nal velocity.

We considered a purely spatial variant of the classical Taylor-Green vortex problem described in
Section 1.2, which we remind the reader has an exact solution. We are interested in two di�erent
operator maps being learned, (i) the spatial map G ∶ u(x,0) → u(y,1), and (ii) the parametric map
G ∶ τ → u(y,1) where Ωa = τ ⊂ R2 is the parameter space of A and ν. All other �ow details were
identical to the setup in Section 1.2 and are provided in row 5 in Table 2. We show the results for
both operator maps in Figure 6. We saw similar trends in this problem as the ones in the spacetime
version of this problem in Section 1.2. However, here we saw the π-PPKM gain a mild accuracy
advantage over the PPKM method for N = 5000, demonstrating the bene�t of incorporating spatial
periodicity in this periodic problem. Additionally, our method signi�cantly outperforms the neural
operator baselines in terms of both accuracy and training times.

B.2 2D lid-driven cavity �ow

The classic 2D lid-driven cavity �ow problem [187�190] describes laminar �uid �ow in a square
cavity Ωa = Ωv = [0,1]2 whose lid moves tangentially along the top boundary. We initialized the
horizontal velocity utop1 to be constant along the top boundary (hence an impulsive start), sampled
from the random distribution N[0.8,2.5](1.5,1), and zero everywhere else. u2 was initialized to zero
everywhere. We used the moving wall option provided in SU2 to prescribe the BC on the top
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Fig. 7: The 2D laminar lid-driven cavity �ow problem. (A) and (B) show examples of an input
function (the initial velocity) and an output function (the �nal velocity), respectively. (C) and (D)
show the test relative ℓ2 errors and training runtimes as functions of N .

boundary. The other three boundaries had no-slip BCs. We used a triangular mesh with 9566
points. The simulation ran until T = 5 with ∆t = 10−3 and the operator map of interest was
G ∶ u(x,0) → u(y,5). We also provide these details in row 2 in Table 2. We show example input and
output functions in Figures 7A and 7B respectively.

The VKM method outperformed the PPKM method for small N as shown in Figure 7C, but
both methods achieved the same errors as N increased. Our method achieved around 2.5 orders of
magnitude lower errors and around 1.4 orders of magnitude faster training times (Figure 7D) than
the neural operators.

B.3 2D backward-facing step

This problem focuses on 2D laminar �uid �ow over an isothermal backward-facing step at Re =
800 [191] 2. The domain of the problem is Ωa = Ωv = [0,15] × [−0.5,0.5]. Typically, �ow simulations
for this problem involve �uid �ow in both the upstream and downstream channels. We simpli�ed the
geometry by only simulating the downstream channel of the step. Let the channel height and width
be H and 15H, respectively. The upper half of the left boundary was speci�ed with the following
initial condition,

u1(x2) = νx2 ∗ (0.5 − x2),0 ≤ x2 ≤ 0.5, (35)

2https://su2code.github.io/tutorials/Inc_Laminar_Step
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Fig. 8: The 2D laminar backward-facing step problem. (A) and (B) show examples of an input
function (the initial velocity) and an output function (the �nal velocity), respectively. (C) shows
the parabolic pro�le of the inlet velocity. (D) and (E) show the test relative ℓ2 errors and training
runtimes as functions of N .

39



where ν is the kinematic viscosity, u1 is the horizontal velocity component, and x2 is the vertical
spatial coordinate. The velocity was initialized to be zero everywhere else. See Figure 8C for an
example of the parabolic inlet BC. The top, bottom, and bottom half of the left (corresponding
to the step face) boundaries were prescribed no-slip BCs. A zero pressure BC was imposed on the
right boundary. We ran the SU2 simulation until T = 5 with ∆t = 10−3. ν was randomly sampled
from the random distribution N[1,36](18,18) which resulted in Reynolds number range [28,900]
across the simulations. A triangular mesh with 7359 points was used. The operator of interest was
G ∶ u(x,0) → u(y,5). These con�guration details are provided in row 3 in Table 2. We show examples
of input and output functions in Figures 8A and 8B respectively.

Here, our method rapidly reached the lowest errors around N = 1000, possibly due to hidden
low-rank structure in the input functions. A subsequent spike was then followed by another steady
decrease in error for increasing N as shown in Figure 8D. Regardless, our method achieved close to
three orders of magnitude lower errors and two orders of magnitude faster training times (Figure 8E)
than the neural operators.

Out-of-distribution (OOD) test: We additionally performed an experiment to compare our
methods against baseline operator learning methods in terms of OOD capability. We trained on
the dataset which falls in the Re ∈ [28,900] regime and tested on 1000 test functions whose ν was
sampled from N[38,70](54,30). For N = 500 and m = 1000, both the kernel-based methods achieved
a relative ℓ2 error around 0.961 whereas the Geo-FNO and the Transolver models achieved errors
of 0.221 and 0.0852, respectively. This is somewhat intuitive: the kernel methods are interpolatory
and thus more sensitive to the range of the training data upon generalization, while neural operators
are essentially trained with least-squares techniques, have more trainable parameters, and therefore
better OOD behavior. We strongly suspect that building a viscosity-aware kernel will change this
easily; it is also likely that making the kernels have more trainable parameters will help close the gap.

B.4 2D buoyancy-driven cavity �ow

This (modern) classic problem describes the 2D laminar buoyancy-driven �ow in a square cavity
Ωa = Ωv = [0,1]2 with adiabatic top and bottom walls and constant temperature on the left and right
walls [192] 3. Additionally, we also prescribed the gravitational body force f = −g. All four walls had
no-slip BCs prescribed. We randomly initialized the temperature (in Kelvin) at the left wall Tleft by
sampling from the distribution N[300,600](450,100). Tright was set to Tleft/4. The �ow density was

initialized to 5.97 × 10−3 kg/m3 which corresponds to a Rayleigh number of 106. The temperature
everywhere else in the domain was initialized to 288.15 K. The domain was discretized with a
quadrilateral mesh containing 10,514 points. We ran time dependent simulations in SU2 until T = 5
with∆t = 10−3. The operator map being learned was G ∶ T(x,0) → u(y,5). These con�guration details
are provided in row 4 in Table 2. We show examples of input and output functions in Figures 9A
and 9B. Our method achieved orders of magnitude smaller errors (Figure 9C) and training times
(Figure 9D), and a faster convergence rate w.r.t N than the neural operator baselines.

B.5 2D merging vortices

This challenging problem describes the 2D laminar �ow resulting from the merging of two
vortices [193�195] in a square domain Ωa = Ωv = [0,2π]2. We started by prescribing an incompressible
velocity �eld in the polar coordinates centered at x = (xc1, xc2). Let r =

√
(x1 − xc1)2 + (x2 − xc2)2 where

x = (x1, x2) ∈ Ω. Then we prescribed the following Cartesian velocity �eld components:

u1(x) = −
x2 − xc2
r

q(r), (36)

u2(x) =
x1 − xc1
r

q(r), (37)

with q(r) = 4re−rα, ensuring q(0) = 0 for regularity at the vortex center. This construction yielded a
divergence-free velocity �eld by construction. The associated scalar vorticity �eld ω is given by

ω(r) = (8 − 4αrα)e−r
α

, (38)

3https://su2code.github.io/tutorials/Inc_Laminar_Cavity
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Fig. 9: The 2D laminar buoyancy-driven cavity �ow problem. (A) and (B) show examples of an
input function (the initial temperature) and an output function (the �nal velocity), respectively. (C)
and (D) show the test relative ℓ2 errors and training runtimes as functions of N .

where α > 0 controls the sharpness of the vortex core. To the best of our knowledge as of the time
of writing, SU2 does not allow the direct prescription of an initial vorticity �eld for time dependent
simulations; we therefore initialized the �ow through the velocity �eld in (37). We prescribed periodic
BCs on all four walls. We sampled α ∈ [1,14] from a uniform distribution. We used the same
triangular mesh as the one in Section B.1. We ran the SU2 simulation until T = 0.4 with ∆t = 10−3.
The operator of interest here was G ∶ ω(x, t = 0) → u(y,0.4). We provide these details in row 7 in
Table 2. We show examples of the input and output functions in Figures 10A and 10B.

The errors reported in Figure 10C show that our method rapidly achieves the lowest of all the
errors just shy of N = 1000. The errors then began to climb as a function of N . The di�culty of this
problem is further shown by the unusually large error bars on the neural operators and the fact that
there are no discernible di�erences in the accuracy between π-PPKM and PPKM despite this being
a periodic problem. It is likely that our method's accuracy deteriorates for large N due to the same
reason as the no-vortex-shedding �ow regime in Section 1.1; the output functions vary minimally
with changes in the input functions. For a small training dataset, N = 100 or N = 500, our method
outperforms the neural operator baselines. These results where errors climb with N also indicate the
need for importance sampling and/or adaptive sampling of the input functions.

C E�ect of the Ridge Parameter θ on Accuracy

As described in Section 3.4.1, we added a small regularization parameter (�nugget�) θ to the
diagonal of the operator kernel. Across our experiments, we tested three di�erent values of θ:
10−4, 10−6, and 10−8, and reported the one with the best errors. We formed two insights from this
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(A) (B)

(C) (D)

Fig. 10: The 2D laminar merging vortices problem. (A) and (B) show examples of an input function
(the initial vorticity containing two adjacent vortices) and an output function (the �nal velocity),
respectively. (C) and (D) show the test relative ℓ2 errors and training runtimes as functions of N .

experiment. First, for problems where the dataset was generated using SU2, the operator kernel
bene�ted greatly from a larger θ as opposed to problems where the dataset was generated from
analytical solutions. This can be seen in Figures 12 and 13, which show the relative ℓ2 errors at the
coarsest and �nest nodesets using all three magnitudes of θ for the 3D species transport and 2D
Taylor�Green vortices problems, respectively. The e�ect of the magnitude of θ was more pronounced
for the results on the coarser nodesets, shown in Figures 12A and 13A, than in the �ner nodesets,
shown in Figures 12B and 13B. This is likely due to the numerical truncation errors inherent in
the solution �elds, manifesting as both numerical dissipation and dispersion. These errors likely
propagate to the spatial interpolation coe�cients which are then interpolated by the operator kernel.
In contrast, the Taylor�Green problems do not use SU2 as the solutions are known analytically.
Consequently, adding a regularization parameter hurts the performance there. For most problems
using SU2, θ = 10−4 or θ = 10−6 yielded the best errors. We also experimented with adding a similar θ
to the property-preserving kernel to address the noise in the velocity �elds, however, it exaggerated
the regularization of the spatial interpolation coe�cients which resulted in very poor relative ℓ2
errors on generalization.

D Examples of approximate kernel Fekete points

Figure 14 shows example �gures of m = 100, m = 500, and m = 1000 approximate kernel Fekete
points in the domain Ω = [0,1]2. These points were picked from the mesh of the 2D lid-driven cavity
�ow problem. The �gures show very clearly the greater relative importance the algorithm puts on
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Fig. 11: Uncertainty quanti�cation for the 3D turbulent species transport example. (A) shows the
posterior mean velocity �eld. (B) and (C) show the velocity �elds corresponding to the one standard
deviation of the posterior predictive distribution ξ. Section 1.3.1 provides a discussion of these results.

(A) (B)

Fig. 12: The e�ect of the magnitude of θ in the 3D species transport problem. We tested using
θ = 10−4, θ = 10−6, and θ = 10−8. (A) and (B) show the test relative ℓ2 errors at 500 and 7000 points,
respectively, using di�erent θ.
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(A) (B)

Fig. 13: The e�ect of the magnitude of θ in the 2D laminar Taylor�Green vortices problem for the
purely spatial operator map. We tested using θ = 10−4, θ = 10−6, and θ = 10−8. (A) and (B) show the
test relative ℓ2 errors at 500 and 7288 points, respectively, using di�erent θ.

the points closer to the boundary, which helps alleviate the Runge phenomenon and improves the
regularity of the interpolation coe�cients.

E Neural operator implementation details

We outline relevant implementation details for the Geo-FNO [66] and Transolver [67] models
below.

Geo-FNO: The resolution is denoted by s in the publicly available code by the authors of [66].
We tested with s = {20,30,40,50,60} for all the 2D problems and s = {10,15,20,25} for both 3D
problems and picked the best performing s. We also tuned the number of modes used, searching
over three distinct values for each problem including ⌊ s

2
⌋. The channel dimension was varied over

{32,64,128}. Following [66], we �xed the number of Fourier layers to four. Due to the Geo-FNO
requiring the input and output functions to have the same d-dimensional domain, we made the
following adjustments to the datasets:

� 2D Taylor�Green spacetime: We treated this equivalently to a 3D spatial problem.
� 2D Taylor�Green spacetime parametric map: This was also treated as a 3D spatial problem
except since the input functions are the A and ν coe�cients, we repeated them as vector-valued
constant functions sampled on the same spacetime grid as the output functions.

� 3D Species transport and �ow past an airfoil: We padded the input functions in the z

direction with zeros to make them functions of three variables.

Transolver: The hyperparameters in this model included the number of attention layers (varied
over {3,4,5}), dimensions of the embeddings (varied over {32,64,128}), number of heads (varied over
{4,6,8}), and number of slices (varied over {16,32,64}). In addition to matching the dimensionality
of the input and output functions like the Geo-FNO, the Transolver model additionally requires
that the input and output functions share the same underlying discretization. To achieve this for
the 2D Taylor�Green vortices spacetime (both the spatiotemporal and parametric maps), 3D species
transport, and 3D �ow-past-an-airfoil problems, we constructed a new grid as the union of the input
and output discretizations. Both the input and output functions were evaluated on this new grid
with zeros where their respective data was missing. The loss was computed only on the original
output function grid.

Training: For both models, we used the Adam optimizer and the default learning rate schedule
from the publicly available code. A cosine annealing learning rate schedule was used for the Geo-
FNO and a OneCycle 4 learning rate schedule for the Transolver. For both, we set the maximum
learning rate to 10−3 and the activation function to GELU. In all problems and for both models, we
normalized the input spatial coordinates to [0,1]d; we observed that omitting this step degraded the

4https://docs.pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
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(A) (B)

(C)

Fig. 14: (A) m = 100, (B) m = 500, and (C) m = 1000 approximate kernel Fekete points in the
domain Ω = [0,1]2.

performance. We used the default normalization scheme for the input function samples themselves;
speci�cally, the Geo-FNO rescales the input functions pointwise across all training functions to zero
mean and unit variance, and the Transolver rescales input functions with a global normalization
across all points and training functions to zero mean and unit variance. Both were trained in single
precision for 500 epochs with a batch size of 20 using the NCSA Delta GPU cluster 5 with NVIDIA
A100 and A40 GPUs.

Divergence computation: We use high-order accurate local (stencil-wise) interpolation with
polyharmonic spline (PHS) RBFs augmented with high-degree polynomials [196] to interpolate the
neural operators' output functions. Then, the interpolant's bases were di�erentiated analytically to
compute the divergence. The order of accuracy of the interpolation was varied over {5,7,9} and
the lowest resulting divergence (pointwise maximum divergence averaged across all test functions)
was reported; we excluded the boundary divergences for safety as the stencils at the boundary were
one-sided and hence not as reliable.

5https://www.ncsa.illinois.edu/research/project-highlights/delta
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